
Oscillating neural circuits: Phase, amplitude, and the complex

normal distribution

Abstract

Multiple oscillating time series are typically analyzed in the frequency domain, where co-
herence is usually said to represent the magnitude of the correlation between two signals at
a particular frequency. The correlation being referenced is complex-valued and is similar to
real-valued Pearson correlation in some ways but not others. We discuss dependence among
oscillating series in the context of the multivariate complex normal distribution, which plays a
role for vectors of complex random variables analogous to the usual multivariate normal distri-
bution for vectors of real-valued random variables. We emphasize special cases that are valuable
for the neural data we are interested in, providing new variations on existing results. We then
introduce a complex latent variable model for narrowly band-pass filtered signals, at some fre-
quency, and show that the resulting maximum likelihood estimate produces a latent coherence
that is equivalent to the magnitude of complex canonical correlation at the given frequency. We
also derive an equivalence of partial coherence and the magnitude of complex partial correlation,
at a given frequency. Our theoretical framework leads to interpretable results in an interesting
multivariate data set from the Allen Institute for Brain Science.

Keywords: Oscillations, Complex Normal Distribution, Coherence, Latent Variable Model.

1 Introduction

Oscillations in neural circuits have been observed under a variety of circumstances, provoking much
speculation about their physiological function (Buzsaki & Draguhn, 2004; Fries, 2005). In the past
15 years the role of oscillations at particular frequencies has been the subject of considerable ex-
perimental investigation, including the incorporation of causal manipulation (Cardin et al., 2009).
Of particular interest is the intriguing possibility that oscillations facilitate purposeful communi-
cation across distinct parts of the brain, such as when an organism must retrieve and hold items
from memory or direct its visual attention to a particular location (Miller et al., 2018; Schmidt
et al., 2019), and this has led to the idea that alterations of circuit oscillations could indicate brain
dysfunction (Mathalon & Sohal, 2015).

From a statistical perspective, regardless of their mechanistic function, neural oscillations can
be considered useful indicators of coordinated activity across brain regions. A short snippet of
data, typical of those we have analyzed, is shown in the top panel of Figure 1, together with a
band-pass filtered version. In the panel below are band-pass filtered series for two trials, where at
many points in time the amplitudes or the phases, or both, are di↵erent. When series from two
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Figure 1: Three seconds of LFP data filtered at 6.5Hz with a window from 6Hz to 7Hz. In the
top figure, we plot both the raw LFP signal, which consists of a noisy oscillation around 6.5Hz,
and the filtered signal, which removes the noise. In the bottom figure, we plot filtered data from
the same electrode across two trials. At many points in time the two trials have di↵erent phases
and/or amplitudes.

electrodes (in di↵erent parts of the brain) are considered, the two phases may tend to shift forward
or backward together, across trials, which would be an indication of coordinated activity. Similarly,
there may be trial-to-trial correlation of the amplitudes.

To quantify this form of association, an obvious question is whether it might be advantageous to
consider phase and amplitude together, as defining complex numbers, and model association using
multivariate complex distributions. In addition, data like those in Figure 1 often come from many
recordings in each brain region, which somehow must be combined. We investigate the properties
of the multivariate complex normal distribution with the goal of using them to analyze interactions
among multiple groups of oscillating time series.

A related conceptual concern comes from the standard interpretation of coherence, which is the
starting point for much frequency-based analysis of co-dependence. Using the Cramér (or Cramér–
Khintchine) representation of a bivariate stationary time series, coherence is usually said to be the
magnitude of the time series correlation at a particular frequency (e.g., Shumway and Sto↵er, 2017,
Section 4.6). The di�culty with this interpretation is that “correlation” here refers to complex
correlation of complex random variables, which is analogous to Pearson correlation for real-valued
variables in certain respects, but not others.

This paper reviews and reformulates ideas drawn from the literature and then provides several
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new results, including a summary of interacting groups of oscillating multivariate time series using
a time-domain rendering of latent coherence, which turns out to be the magnitude of a complex-
valued canonical correlation. Although we have been motivated by the analysis of neural data, we
believe the paper will be of general statistical interest, as it concerns a basic topic in time series
analysis. We also hope it represents a suitable tribute to Nancy Reid, whose work has often aimed
to advance statistics through conceptual clarification and consolidation.

2 Background and Summary

We are interested in covariation of both phase and amplitude in two or more time series. The
data we analyze in Section 6 come from experiments during which animals are shown a visual
stimulus repeatedly, across many trials, while neural activity is recorded from electrodes inserted
into the brain. Repeated measurements across many trials is typical of much neurophysiological
data, and these repetitions are helpful in dealing with the striking non-stationarity present in neural
recordings (see, for example, Kass et al., 2018). In addition, neurophysiological experiments often
collect data from multiple electrodes embedded in multiple brain regions.

From oscillating series like those in the top panel of Figure 1, the band-pass filtered version
can be obtained by Fourier analytic methods (though it can also be obtained using wavelets). As
long as the band in the filtering is su�ciently narrow (surrounding some particular frequency), at
any point in time the phase and amplitude of the real-valued, filtered time series, can be recovered
using the Hilbert transform (see Appendix A), under an assumption of local stationarity (Ombao &
Van Bellegem, 2008). A phase and amplitude define a complex number and the Hilbert transform
converts a real-valued signal into the corresponding complex-valued signal. For a pair of repeatedly-
observed complex-valued variables, correlation is more complicated than in the real case: the
covariance becomes complex-valued and there are two forms of linear covariation, which are called
covariance and pseudo-covariance. Complex covariance is defined for two complex-valued random
variables X1, X2 as

cov(X1, X2) = E{(X1 � EX1)(X2 � EX2)},

where x is the conjugate of a complex number x. Note that cov(X1, X2) is a complex number.
Complex pseudo-covariance is define as

pcov(X1, X2) = E{(X1 � EX1)(X2 � EX2)}.

The variance-covariance and pseudo-variance-covariance matrices for a complex random vector X
are then defined analogously to the case of complex random variables, using the Hermitian and
transpose operators, respectively:

var(X) = E{(X � EX)(X � EX)H}, pvar(X) = E{(X � EX)(X � EX)>},

where (X � EX)H = (X � EX)>. When its pseudo-covariance is zero, a complex random vector
is called proper.

In addition to complex correlation, dependence of the phase angles can be measured through
phase-locking value (PLV) (Lachaux et al., 1999) which, as we show in Section 3.2.2, can be viewed
as an analogue of correlation for angular random variables. For more than two phases, a recently-
developed class of models called torus graphs provides a thorough rendering of multivariate phase
dependence (Klein et al., 2020). A torus graph is any member of the full exponential family with
means and cross-products (interaction terms) on a multidimensional torus, which is the natural
home for multivariate circular data because the product of circles is a torus. Thus, torus graphs
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are probabilistic graphical models and represent an analogue to Gaussian graphical models for
circular (angular) data.

Phase coupling is also analyzed using coherence, the magnitude of coherency, which is a
frequency-domain measure that has a form resembling correlation in terms of spectral densities
and cross-spectral densities. One way to understand how coherence becomes complex correlation
at a particular frequency is to consider the result of filtering the signals with a complex band-pass
filter in a band (!0� �,!0+ �), for small �. Ombao and Van Bellegem (2008) noted that the result-
ing narrow-band coherence, which they called “band coherence,” is the correlation of the filtered
signals. We can e↵ectively pass to the limit as � ! 0 to get the infinitesimal version that appears
in the Cramér–Khintchine representation, displayed in Section 4.1. In a similar vein, in Section 4.1
we also note that a single-frequency bivariate process with stochastic amplitudes and phases yields
coherence as magnitude of complex correlation.

Coherence has been used to understand conditional dependence relationships between time
series. Dahlhaus (2000) studied so-called coherence graphs for real-valued time series, and showed
how conditional dependence may be inferred from the partial coherence between these signals.
Partial coherence arises by inverting and rescaling a matrix of coherency values for d time series,
and represents a form of conditional dependence between signals (Ombao & Pinto, 2022). Tugnait
(2019a, 2019b) analyzed conditional dependence between signals with arbitrary spectra by observing
that the limiting distribution of a certain class of transformations of real-valued time series takes
the form of a complex normal distribution.

Our setting, in which we observe multiple signals oscillating at the same frequency, di↵ers
from those previously studied in Dahlhaus (2000) and Tugnait (2019a, 2019b) because our signals
are only oscillating at a single frequency. In Section 4, we provide a comprehensive overview
of how, when we assume complex normality, complex correlation and coherency are equivalent
for our setting. Similarly, we show that complex partial correlation and partial coherency are
equivalent, and we discuss how these concepts are directly tied to notions of conditional dependence
between the observed oscillating time series. Thus, by modeling band-pass filtered data with the
complex normal distribution, we obtain simple interpretations of estimated correlation and partial
correlation matrices in terms of coherence and partial coherence.

Our interest is in recordings from multiple electrodes embedded in each of several brain regions.
To take advantage of the multiple sources of activity observed from each region, we developed a novel
complex normal latent variable model in which each of several latent variables represents activity
in one of the regions (at a particular point in time), and our goal is to estimate the dependence
among these latent variables. We specify the model in Section 5 and apply it to data in Section 6.
The data we analyze are local field potentials (LFPs), which are voltage recordings from electrodes
inserted into the brain; they are low-pass filtered (smoothed) and typically down-sampled to 1
KHz, so that each second of data has 1,000 observations. LFPs represent bulk activity near the
electrode (roughly within 150–200 microns), involving large numbers of neurons (Buzsáki et al.,
2012; Einevoll et al., 2013; Pesaran et al., 2018). Our theoretical results enable us to obtain a simple
interpretation of data from the Allen Institute for Brain Science in Seattle, WA. We examined three
recordings in each of six regions of visual cortex in response to a visual stimulus and estimated
latent correlation and partial correlation matrices after band-pass filtering at 6.5Hz to isolate the
theta rhythm. Although there are many large latent correlations of the theta rhythm oscillations
between regions (which, as we show, may be considered large values of latent coherence), the unique
associations, that is the latent partial correlations, between these regions are modest in size with
the exception of two pairs of regions, AM and PM, as well as DG and CA1, which exhibit latent
partial correlations (latent partial coherence) close to 1.

Although some of the theorems in this paper may be unsurprising to experts in the complex
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normal distribution and frequency-based analysis, they all represent at least novel extensions and
reformulations, and several are entirely new. In Section 3.3.3, we discuss the conditional distribu-
tion of the angles given the amplitudes in polar coordinate representation of the complex normal
distribution. Navarro et al. (2017) showed that the multivariate Generalized von Mises (mGvM)
distribution can be viewed as a conditional distribution of the 2d dimensional real-valued multivari-
ate normal when all of the amplitudes equal one. Here, we change the setting of this result to the
complex normal distribution, generalize it for arbitrary amplitudes, and show how this conditional
distribution changes when certain relevant restrictions are made on the parameters of the complex
normal distribution. These results form new characterizations of torus graphs. They appear in
Theorem 2, Theorem 3, and Corollary 4. In Section 4 we provide a general treatment of partial
correlation, conditional correlation, and conditional dependence for the complex normal distribu-
tion. These results consolidate and reformulate what was previously available in the literature
(see Section 4 for specific citations). The new results in Corollary 13 and Theorem 12 show that
maximum likelihood estimation in our latent variable model produces estimates that are equivalent
to complex-valued versions of canonical correlation. The proofs of the theorems and corollaries we
show are provided in Supplemental Section S1.

3 Dependence of Complex-Valued Random Variables

In this section, we first present the data-generating setting we are attempting to model, in which
we observe complex-valued random vectors, and our goal is to measure association between their
entries. After introducing this setting, we mostly ignore the fact that we are dealing with oscillating
signals, but we will return to this important point in Section 4 when we study the relationship
between coherence, complex correlation, and the complex normal distribution. This important
correspondence is the basis for the analysis presented in this paper.

We first review various measures of pairwise association between complex-valued random vari-
ables, including complex correlation, phase-locking value, and amplitude correlation. We then
discuss two multivariate models for association between complex-valued random vectors: the com-
plex normal distribution, which is based on linear association between complex random vectors,
and the torus graph distribution, which is a multivariate model for phase. In Section 3.3.3, we show
some new results which describe how the torus graph distribution arises by conditioning angles on
amplitudes in the complex normal distribution.

3.1 Setting: Repeated Observations of Oscillating Signals

In this paper, we assume we observe d time series that are oscillating at some frequency !0 on
each of many repeated trials. We can model the data as a d-dimensional random vector Y(t),
and assume these vectors are i.i.d. across trials. Throughout most of the paper we omit the trial
number from our notation. We can apply a local band-pass filter to the raw vector Y(t) around
the frequency !0 at time t to obtain a complex-valued random vector X(t) having components
that are functions of the phases and amplitudes of the oscillations: Xi(t) = Ri(t) exp{◆⇥i(t)} for
Ri(t) 2 (0,1) and ⇥i(t) 2 [�⇡,⇡) for components i 2 [d]. Here, and everywhere else in the paper,
[d] = {i 2 N : 1  i  d}, and ◆ represents the imaginary unit.
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3.2 Pairwise Association of Complex-Valued Random Variables

3.2.1 Complex Correlation

The linear association of complex-valued random variables is measured by complex correlation. We
defined both covariance and pseudo-covariance for complex random variables and random vectors
in Section 2. The corresponding complex correlations are

corr(X1, X2) =
cov(X1, X2)p
var(X1) var(X2)

, pcorr(X1, X2) =
pcov(X1, X2)p
var(X1) var(X2)

.

3.2.2 Angular Association: Phase-Locking Value

Association of the two phases can begin by considering their representation as unit-length complex
random variables X1 = e

◆⇥1 and X2 = e
◆⇥2 . The set of such pairs is the product of two circles, a

2-dimensional torus.
The strength of association between two angular random variables ⇥1,⇥2 can be measured using

phase-locking value (PLV) (Lachaux et al., 1999). When we have repeated observations across N

trials of angular observations ✓(n)1 , ✓
(n)
2 , then we can define

PLV =
1

N

�����

NX

n=1

exp{◆(✓(n)
i

� ✓
(n)
j

)}

����� ,

which is widely used to measure angular dependence of oscillating signals (Lepage & Vijayan, 2017).
To better understand PLV, we provide a theoretical analysis of the components of phase-based

association. Suppose that ci = E{cos(⇥i)} and si = E{sin(⇥i)} for i 2 {1, 2}. The first moment of
Xi is

E(Xi) = E{cos(⇥i)}+ ◆E{sin(⇥i)} = ci + ◆si = rie
◆✓i ,

where ri = (c2
i
+ s

2
i
)1/2 and ✓i is the angle of the vector (ci, si) relative to (1, 0) for i 2 {1, 2}. The

complex covariance of X1 and X2 is

cov(X1, X2) = E
�
X1X2

�
� E(X1) E(X2) = E{e◆(⇥1�⇥2)}� r1r2e

◆(✓1�✓2),

where the pseudo-covariance of X1 and X2 is

pcov(X1, X2) = E (X1X2)� E(X1) E(X2) = E{e◆(⇥1+⇥2)}� r1r2e
◆(✓1+✓2).

The covariance and pseudo-covariance respectively represent rotational and reflectional associa-
tion between X1 and X2. Rotational covariance measures clockwise-clockwise association, and
reflectional covariance measures clockwise-anticlockwise association. Both types of association are
shown in Figure 2. The amplitude of the rotational covariance controls the width of the yellow
high-probability band, and the phase of this complex number specifies the shift of this band, which
is seen along the diagonal of the Cartesian plane; it shifts in the direction from bottom-right to-
ward top-left (Figure 2A). The same notion applies to the reflectional covariance magnitude, but
the band is positioned on the other diagonal (Figure 2B). The presence of both types of covariation
is possible and can lead to concentrated marginals. However, in our experience with phases ex-
tracted from LFP neural data, we have almost always observed exclusively rotational dependence.
In addition, the marginals are close to uniform. If r1 = r2 = 0 (for instance, if the ⇥i are uniform),
then
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Figure 2: The torus is the natural domain for a pair of circular random variables. Illustration
of both types of circular covariance in a torus graph bivariate density, with uniform marginal
densities, plotted side-by-side on a 2-dimensional torus and a Cartesian plane. A. Positive rotational
dependence. B. Negative reflectional dependence. The figure has been adapted from a figure in
Klein et al. (2020).

cov(X1, X2) = E{e◆(⇥1�⇥2)}, corr(X1, X2) = E{e◆(⇥1�⇥2)}.

The quantity E{e
◆(⇥1�⇥2)} is the theoretical counterpart of PLV. Thus, in the absence of reflectional

covariation, if r1 = r2 = 0, then E{e
◆(⇥1�⇥2)} is the analogue of Pearson correlation for angular

random variables.

3.2.3 Amplitude Correlation

For two amplitudes Ri, Rj 2 (0,1), the simplest way to characterize amplitude correlation is
through the ordinary Pearson correlation of real-valued random variables corr(Ri, Rj). Other ap-
proaches involve calculating the correlation of the log of the amplitudes, or of the square of the
amplitudes (Nolte et al., 2020).

3.3 Multivariate Models

3.3.1 The Complex Normal Distribution

A complex random vector X 2 Cd is said to be complex normal (CN) if its real and imaginary
parts are jointly multivariate normal (Andersen et al., 1995). Suppose that (ReX, ImX) ⇠ N (µ,⌃),
where

µ =

✓
µ1

µ2

◆
, ⌃ =

✓
⌃11 ⌃12

⌃>
12 ⌃22

◆
,

so that µ1 = E(ReX), µ2 = E(ImX), ⌃11 = var(ReX), ⌃22 = var(ImX), and ⌃12 = cov(ReX, ImX).
Then

m = µ1 + ◆µ2, � = (⌃11 + ⌃22) + ◆(⌃12 � ⌃
>
12), C = (⌃11 � ⌃22) + ◆(⌃12 + ⌃

>
12),

giving a bijection between (m,�, C) and (µ,⌃). Thus, the complex normal distribution is well-
defined by the parameter set (m,�, C), and we denote the distribution by X ⇠ CN (m,�, C).
Recall that the distribution of X is said to be proper if the pseudo-covariance matrix C is zero.
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Further, X is circularly symmetric, meaning component-wise circularly symmetric so that its pdf
satisfies p(X) = p(e◆↵X) for all ↵ 2 R, if and only if X is proper and has mean zero (Adali et al.,
2011).

The circularly symmetric, proper, and restriction-less CN distributions form full regular ex-
ponential families. This ensures that the MLE, which involves first and second-order moment
statistics, is su�cient. In addition, these families form probabilistic graphical models, so that con-
ditional independence is easily characterized. We return to this in Theorem 8 and Corollary 9. We
provide an abbreviated version of this theorem here; for full details, see Supplemental Section S1.

Theorem 1. Each of the following families forms a full and regular exponential family: (i) the
family of CN distributions represented by CN (µ,�, C), (ii) the family of proper CN distributions
CN (µ,�, 0), and (iii) the family of circularly symmetric CN distributions CN (0,�, 0).

3.3.2 Torus Graphs

Multivariate models for angular random variables are most naturally defined on the torus, rather
than on Euclidean space. Such a model is given in Klein et al. (2020). Here, we briefly review its
construction.

To define an exponential family on a torus with mean and covariance structure, the first
and second-order su�cient statistics are needed. Using two-dimensional rectangular coordinates
(involving cosines and sines), the first-order su�cient statistics are U1 = (cos⇥1, sin⇥1) and
U2 = (cos⇥2, sin⇥2) and the second-order behavior is summarized by

U1U
>
2 =

✓
cos⇥1 cos⇥2 cos⇥1 sin⇥2

sin⇥1 cos⇥2 sin⇥1 sin⇥2

◆
.

We can then write a natural exponential family density for ✓ = (✓1, ✓2) with a canonical parameter
⌘ consisting of ⌘i 2 R2 and ⌘ij 2 R4 for i, j 2 {1, 2}, as

p(✓; ⌘) / exp

8
>><

>>:
⌘
>
1

✓
cos ✓1
sin ✓1

◆
+ ⌘

>
2

✓
cos ✓2
sin ✓2

◆
+ ⌘

>
12

0

BB@

cos ✓1 cos ✓2
cos ✓1 sin ✓2
sin ✓1 cos ✓2
sin ✓1 sin ✓2

1

CCA

9
>>=

>>;
, 0  ✓1, ✓2  2⇡. (1)

For ✓ = (✓1, . . . , ✓d), Equation (1) extends to an exponential family on a d-dimensional torus

p(✓; ⌘) / exp

8
>><

>>:

dX

j=1

⌘
>
j

✓
cos ✓j
sin ✓j

◆
+
X

i<j

⌘
>
ij

0

BB@

cos ✓i cos ✓j
cos ✓i sin ✓j
sin ✓i cos ✓j
sin ✓i sin ✓j

1

CCA

9
>>=

>>;
, 0  ✓i  2⇡. (2)

Based on simple trigonometric identities, Klein et al. (2020) reparameterized this family in a more
interpretable form

p(✓; ⌘(�)) / exp

8
>><

>>:

dX

i=1

�
>
i

✓
cos ✓i
sin ✓i

◆
+
X

i<j

�
>
ij

0

BB@

cos(✓i � ✓j)
sin(✓i � ✓j)
cos(✓i + ✓j)
sin(✓i + ✓j)

1

CCA

9
>>=

>>;
, (3)

which uses the first and second order statistics seen in the definitions of complex covariance. Klein
et al. (2020) then defined a d-dimensional torus graph (TG) to be any member of the family of
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Figure 3: Torus graphs can recover conditional dependence graphs when PLV fails in simulated
data; see Klein et al. (2020) for details. The figure has been adapted from one in Klein et al. (2020).

distributions specified by Equation (2) or Equation (3). If ⇥ is distributed according to p(✓; ⌘),
then we say that ⇥ ⇠ T G(⌘); likewise, if ⇥ is distributed according to p(✓; ⌘(�)), then we say that
⇥ ⇠ T G(⌘(�)).

Because torus graphs form exponential families, a pair of random variables Xi and Xj will be
conditionally independent given all other variables if and only if the four elements in the pairwise
interaction parameter �ij are zero. Thus, torus graphs define probabilistic graphical models.

Torus graphs can uncover conditional dependence relationships, meaning pairwise dependence
edges that are still present after conditioning on the rest of the random variables in the model.
Conditional dependence is obscured with simple correlation type measures such as PLV because
for each edge they only consider two random variables (see Figure 3, which displays a conditional
independence graph from Klein et al. (2020)).

Equation (3) has three parameter groups: marginal concentrations, rotational covariance, and
reflectional covariance. Klein et al. (2020) showed that the sub-model with only rotational co-
variance parameters (which correspond to proper distributions when the statistics U1 and U2 are
considered to be complex variables) does a good job of fitting phase angles extracted from neural
LFP data. In addition, they described how several alternative families of distributions can be
seen as special cases of torus graphs. They then applied their torus graph model to characterize a
network graph of interactions among recordings from four brain regions during a memory task.

Although torus graphs provide interesting exponential families that could have been defined
long ago, they would have been irrelevant to data analysis before recent practical developments
used by Klein et al. (2020) to estimate the parameters of the model.

3.3.3 Characterization of Torus Graphs Using the Complex Normal Distribution

We consider the polar coordinate representation of a random vector with a complex normal dis-
tribution and prove that the conditional distribution of the phases given the amplitudes form a
torus graph. We provide a general statement and then o↵er additional theorems in the proper and
circularly symmetric cases.

Suppose that Ri 2 [0,1) and ⇥i 2 [�⇡,⇡) are the amplitude and phase of Xi for i 2 [d]. In
other words, (Ri,⇥i) is the polar coordinate representation of Xi. We consider the conditional
distribution of the phases given the amplitudes. Under certain parameter restrictions on a complex
normal distribution, this conditional distribution forms a torus graph.
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Theorem 2. Let X 2 Cd be a complex normal random vector such that (ReX, ImX) ⇠ N (µ,⌃).
Let ⌦ = ⌃�1 be the inverse covariance matrix. If ⌦ii = ⌦i+d,i+d and ⌦i,i+d = 0 for i 2 [d], then
⇥ | {R = r} ⇠ T G(⌘) where ⌘i = ri((⌦µ)i, (⌦µ)i+d) and ⌘ij = �rirj(⌦i,j ,⌦i,j+d,⌦i+d,j ,⌦i+d,j+d)/2
for i, j 2 [d].

In Theorem 2, the components of the conditioning vector r appear as multipliers in the natural
parameters but the graph is the same for every vector r.

There exists another distribution in the literature, known as the multivariate Generalized von-
Mises (mGvM) distribution, which is a more general version of the TG distribution that includes
all second moment terms (Navarro et al., 2017). Navarro and colleagues showed that given a
2d-dimensional normal distribution analogous to the complex normal, ⇥ | {R = 1} is a mGvM
distribution without requiring any restrictions on the parameters of the original normal distribution.
In Supplemental Section S1, we generalize this result for any conditional distribution ⇥ | {R = r}

and then leverage it to prove Theorem 2 (see Supplemental Section S1.2).
We can obtain a more precise characterization of the conditional distributions under the pa-

rameter restrictions C = 0 and m = 0.

Theorem 3. If X ⇠ CN (m,�, 0), so that the complex normal distribution of X is proper, then
⇥ | {R = r} ⇠ T G(⌘(�)), as in Equation (3), where �ij,3 = �ij,4 = 0 and �ij,k denotes the kth
component of �ij.

Corollary 4. If X ⇠ CN (0,�, 0), so that the complex normal distribution of X is circularly
symmetric, then ⇥ | {R = r} ⇠ T G(⌘(�)) with the same restrictions as in Theorem 3 and with the
additional restriction that �i = 0 for all i 2 [d].

These theorems say that when the complex normal distribution is proper, the resulting torus graph
family has only rotational dependence. The absence of reflectional dependence is intuitive from the
definition in Section 3.3.2 of reflectional covariance as pseudo-covariance. Under circular symmetry,
because �i = 0, the conditional distribution ⇥i|{R = r} is uniform over [0, 2⇡), and additionally
⇥i is marginally uniform. We repeat that the combination of uniformity and only rotational
dependence is a particularly important special case, partly because this is the case in which PLV
becomes a circular analogue to Pearson correlation. From a theoretical perspective, according to an
argument given by Picinbono (1994), stationary bandpass-filtered signals with su�ciently narrow
bands are proper. In the context of the particular neural data application reported here, we provide
empirical evidence for circularity with Figure S2, which shows that the sample covariance matrix
has much larger entries than the sample pseudo-covariance matrix.

4 Coherency and the Complex Normal Distribution

Assume we have a d-dimensional time series for which every dimension contains an oscillation at a
given frequency. As discussed previously, these oscillations of interest can be extracted by band-pass
filtering. Spectral dependence and coherency were analyzed using the complex normal distribution
by Tugnait (2019a, 2019b), who considered a more general setting in which the spectrum of the
signals may be distributed across numerous frequencies. However, when band-pass filtered signals
all oscillate at the same frequency, we get simpler and more interpretable results, which we leverage
using our latent variable model in Section 5.

The key to our approach is a well-known result that coherency is a form of complex correlation
for stationary signals oscillating at a particular frequency (Ombao & Van Bellegem, 2008). For
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single-frequency signals, it further turns out that partial coherency, which is used to study condi-
tional dependence among time series, is equivalent to partial correlation (Dahlhaus, 2000; Ombao
& Pinto, 2022). For the complex normal distribution, we provide a systematic study of complex
conditional correlation, complex partial correlation, and conditional independence. We also review
the relationship between complex correlation and other measures of pairwise dependence.

4.1 Coherency and Pairwise Complex Correlation

Suppose we have two stationary signals X1(t), X2(t) on t 2 [0, 1], which may be complex-valued.
Assume they have auto-covariance functions ⌃ii(t) = cov{Xi(t0 + t), Xi(t0)}, for i 2 {1, 2}, and
a cross-covariance function ⌃12(t) = cov{X1(t0 + t), X2(t)} (these definitions do not depend on t0

due to stationarity). For ! 2 [�0.5, 0.5], the spectrum and cross-spectrum of the signals are

fii(!) =

Z 1

0
⌃ii(t)e

�◆2⇡!t
dt, f12(!) =

Z 1

0
⌃12(t)e

�◆2⇡!t
dt,

and the coherency is

⌧12(!) =
f12(!)p

f11(!)f22(!)
.

The coherency is complex-valued. The coherence is the magnitude of the coherency. The Cramér–
Khintchine decomposition (see Ch. 3 of Brémaud, 2014) is

✓
X1(t)
X2(t)

◆
=

Z 0.5

�0.5
exp(◆2⇡!t)d

✓
Y1(!)
Y2(!)

◆
,

where (Y1(!), Y2(!))> is a bivariate orthogonal increment random process. In this case, the co-
herency between X1 and X2 at frequency !0 is often considered as the complex-valued correlation
coe�cient between the infinitesimal increments of Y1 and Y2 at !0 , which is to say

⌧12(!0) = corr{dY1(!0), dY2(!0)}.

A quick way to see that this characterization makes sense is to consider two time series oscillating
at a single frequency !0, i.e.,

X1(t) = R1 exp{◆(⇥1 + 2⇡!0t)}, X2(t) = R2 exp{◆(⇥2 + 2⇡!0t)},

where Ri 2 [0,1) and ⇥i 2 [�⇡,⇡) are random variables, which we think of as representing the
trial-specific amplitude and phase of Xi, respectively, for i 2 {1, 2}. Then the auto-covariance and
cross-covariance kernels are ⌃ii(t) = var(Rie

◆⇥i)e◆2⇡!0t and ⌃12(t) = cov(R1e
◆⇥1 , R2e

◆⇥2)e◆2⇡!0t.
The spectrum and cross-spectrum at frequency !0 are

fkk(!0) =

Z 1

0
var(Rie

◆⇥i)e◆2⇡!0te
�◆2⇡!0tdt = var(Rie

◆⇥i), k 2 {1, 2}, (4)

and

f12(!0) =

Z 1

0
cov(R1e

◆⇥1 , R2e
◆⇥2)e◆2⇡!0te

�◆2⇡!0tdt = cov(R1e
◆⇥1 , R2e

◆⇥2), (5)

respectively. In this case, the coherency is the complex-valued correlation between X1(t) and X2(t)
for every t,

⌧12(!0) =
f12(!0)p

f11(!0)f22(!0)
= corr(R1e

◆⇥1 , R2e
◆⇥2) = corr{X1(t), X2(t)}.
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As a generalization of the single-frequency case, if a pair of signals are band-pass filtered over a
small frequency band, it is possible to define “band coherency” over a narrow band of frequencies.
In this case, the band-coherency of the filtered signals is equal to the complex correlation of the
filtered signals (Ombao & Van Bellegem, 2008).

4.2 Partial Correlation, Conditional Correlation, and Conditional Indepen-
dence in the Complex Normal Distribution

In the case of real-valued random variables, conditional correlation and partial correlation have
been studied extensively (Baba et al., 2004). For such real-valued random variables, conditional
correlation and partial correlation are distinct quantities, and conditional dependence between
random variables need not imply that either quantity is nonzero. However, real random variables
that are jointly normal have the following special properties: (i) conditional correlation and partial
correlation are equal, and (ii) zero conditional correlation (or partial correlation) is equivalent to
conditional independence.

In the complex case, the relationship between these quantities has been partially studied in
Andersen et al. (1995) and Tugnait (2019a, 2019b). Andersen et al. (1995) define conditional co-
variance for the proper complex normal distribution and show how it is related to various entries
in the complex precision matrix. They further relate conditional dependence to conditional covari-
ation for the proper complex normal distribution. Tugnait (2019a, 2019b) discusses how to assess
conditional dependence for the proper and improper complex normal distributions.

In this section, we define partial correlation for complex random vectors in a manner analogous
to the real case, we describe the di↵erences between partial correlation and conditional correlation
for complex random variables, and we provide results relating partial correlation and conditional
independence, even in the improper complex normal case.

In what follows, assume we have some complex-valued random vector X 2 Cd with finite first
and second moments. For any subset I ⇢ [d], let XI denote the random vector given by the
elements of X whose indices are in I (in order). Let eXI 2 C2|I| be the concatenation of XI and its
conjugate, i.e., eXI = (XI , XI). Let L( eXI) = {↵ + �

H eXI : ↵ 2 C,� 2 C2|I|
} be the linear space

spanned by eXI , and for every i 2 [d], let projL( eXI)
(Xi) = argmin

Y 2L( eXI)
E{(Y �Xi)H(Y �Xi)}

be the projection of Xi onto that space.

Definition 5. For i, j 2 [d], the partial correlation between Xi, Xj is given by

⇢(Xi, Xj | X[d]\{i,j}) = corr
n
Xi � projL( eX[d]\{i,j})

(Xi), Xj � projL( eX[d]\{i,j})
(Xj)

o
,

and the partial pseudo-correlation between Xi, Xj is

⇢(Xi, Xj | X[d]\{i,j}) = pcorr
n
Xi � projL( eX[d]\{i,j})

(Xi), Xj � projL( eX[d]\{i,j})
(Xj)

o
.

The conditional correlation is given by

corr(Xi, Xj | X[d]\{i,j}) =
cov(Xi, Xj | X[d]\{i,j})q

var(Xi | X[d]\{i,j}) var(Xj | X[d]\{i,j})
.

The conditional pseudo-correlation is defined analogously, replacing cov with pcov.

We start by stating a correspondence between partial correlation and entries in a transformed
precision matrix. Results in this section are proven in Supplemental Section S1.
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Theorem 6. For any complex-valued random vector X, let e� = var( eX). Denote by diag(A) the
diagonal matrix with diagonal entries the same as A. Let

P = diag(e��1)�1/2e��1diag(e��1)�1/2
.

Then ⇢(Xi, Xj | X[d]\{i,j}) = Pi,j and ⇢(Xi, Xj | X[d]\{i,j}) = Pi,j+d.

Although conditional correlation and partial correlation may be di↵erent in general (Baba et al.,
2004), they coincide in the complex normal case.

Theorem 7. If X ⇠ CN (m,�, C) then, for i, j 2 [d],

⇢(Xi, Xj | X[d]\{i,j}) = corr(Xi, Xj | X[d]\{i,j}),

⇢(Xi, Xj | X[d]\{i,j}) = pcorr(Xi, Xj | X[d]\{i,j}).

In the real-valued case, if the partial correlation is zero for jointly complex normal random
variables, then the two variables are conditionally independent. Because in the complex case we
have to consider both types of second-order association, we must consider both partial correlation
and pseudo partial correlation. For the following theorems, given random variables A,B,C we
write A ?? B | C if the conditional distributions A | C and B | C are independent.

Theorem 8. If X ⇠ CN (m,�, C) then, ⇢(Xi, Xj | X[d]\{i,j}) = 0 and ⇢(Xi, Xj | X[d]\{i,j}) = 0 if
and only if Xi ?? Xj | X[d]\{i,j}.

A corollary of this theorem allows us to drop the reliance on the pseudo-correlation in the proper
complex normal case, since such a correlation must be zero.

Corollary 9. If X ⇠ CN (m,�, 0), then ⇢(Xi, Xj | X[d]\{i,j}) = 0 if and only if Xi ?? Xj | X[d]\{i,j}.

By applying Theorem 6 and Theorem 8 we get the following corollary:

Corollary 10. If X ⇠ CN (m,�, C), then Xi ?? Xj | X[d]\{i,j} i↵ e��1
ij

= 0 and e��1
i,j+d

= 0. In

addition, if C = 0, then Xi, Xj are conditionally independent i↵ ��1
ij

= 0 for � = var(X).

4.3 Partial Coherency and Partial Correlation

We now leverage our results from Section 4.2 to show a correspondence between partial coherency,
a modification of coherency to account for conditional dependence, and partial correlation. Partial
coherency was developed to better di↵erentiate unique pairwise associations from associations that
are shared with one or more other observed variables (Ombao & Pinto, 2022). Assume we have d

signals X1(t), . . . , Xd(t) on t 2 [0, 1]. Let ⌃ij(t) = cov{Xi(t + t0), Xj(t0)}, and define fij(!) as in
Section 4.1. Consider the matrix f(!) formed by assembling the entries of fij(!). Let diag{f(!)}
be the matrix containing the diagonal elements of f(!) and zero on the o↵-diagonals. Let

g(!) = diag[{f(!)}�1]�1/2
{f(!)}�1diag[{f(!)}�1]�1/2

.

We call g(!)ij the partial coherency between signals i, j. If X1(t), . . . , Xd(t) are all oscillating
signals at some frequency !0, we obtain the following theorem:

Theorem 11. If Xk(t) = Rk exp{◆(⇥k+2⇡!0t)} for all k 2 [d], and pcorr{Xi(0), Xj(0)} = 0, then

g(!0)ij = ⇢{Xi(0), Xj(0) | X[d]\{i,j}(0)}.
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This theorem follows from observing that, by our results in Section 4.1, ⌃ij(0) = f(!0)ij for such

signals. We can then apply Theorem 6, and observing that the upper right block of e� = cov( eX) is
zero because pcorr{Xi(0), Xj(0)} = 0, we obtain the desired result.

Researchers have previously studied partial coherency as a way to construct a conditional inde-
pendence graph for time series (Dahlhaus, 2000). For instance, Tugnait (2019a, 2019b) estimates
conditional independence between time series by first constructing a su�cient statistic that ac-
counts for the oscillations in a time series at all observable frequencies, and then, after observing
that the limiting distribution of this statistic is a complex normal random variable, deriving con-
ditional independence tests based on this limiting distribution. As we have seen, because we are
dealing with signals oscillating at a single frequency, we can estimate partial coherency simply by
computing the partial correlation between observed variables. We will use this to interpret our
latent variable model. We further provide Supplemental Section S2, which details various simple
examples in which PLV, amplitude correlation, and coherence are compared.

4.4 Alternative Measures of Pairwise Association for Oscillating Signals

Thus far, we have focused on coherence as a measure of association for oscillating signals. As
described in Section 3, other measures exist for studying dependence between oscillating signals.
In particular, we described phase-locking value, which many investigators use as an alternative to
coherence. Since PLV was first introduced, people have debated whether to use PLV, coherence,
or amplitude correlation to measure connectivity between oscillatory neural signals (e.g., Lachaux
et al., 1999; Lepage & Vijayan, 2017; Lowet et al., 2016; Srinath & Ray, 2014). Our intention here
is to review briefly some of these arguments to understand how coherence is situated within these
other possible measures of association.

Clearly, coherence depends on both the phase and amplitude of oscillatory signals. Dependence
on amplitude, however, has invited criticism of coherence as a pure representation of the degree
of synchrony among phases of oscillatory signals. Phase-locking value was introduced in part to
overcome the perceived limitations of this dependence (Lachaux et al., 1999). Later work showed
that, particularly in non-stationary settings, estimators of coherence are not well-behaved and can
fail to accurately represent synchrony (Lowet et al., 2016). Other authors have criticized coherence
on the grounds that it can be biased by amplitude correlation (Srinath & Ray, 2014). However, some
investigators have responded to these criticisms by pointing out that coherence may up-weight trials
with larger amplitude oscillations, where information about phase is likely to be stronger (Lepage
& Vijayan, 2017). Thus, the inclusion of amplitude information may be beneficial.

Further, some researchers have analyzed the relationship between PLV, amplitude correlation,
and coherence when particular parametric models are assumed about the data. For instance,
Aydore et al. (2013) found that when the data are distributed according to the complex normal
distribution, that PLV can be written as a function of coherence, indicating that coherence provides
all the information that PLV does. Further, Aydore et al. (2013) found that both the von Mises
distribution and Gaussian models are e↵ective for studying phase associations in LFP data, and
argued that PLV and cross-correlation capture the same information. More generally, Nolte et al.
(2020) made the remark that, because cross-correlation provides all possible information about
the second-order statistical properties of circularly symmetric bivariate complex normal random
variables, any pairwise measure of association can be written as a function of cross-correlation
(and thus coherency). Nolte et al. found that, for complex normal distributed random variables,
they could write PLV and related phase-based coupling statistics, as well as amplitude-amplitude
correlational statistics, as functions of coherence.

Thus, if the data are assumed to be proper complex normally distributed, then complex cor-
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relation, and thus coherence, provide the most detailed measure of association available. For the
oscillating neural signals which are the focus of this work, the complex normal model appears to be
a reasonable approximation of the data, and so we focus on coherence as our measure of pairwise
association.

5 A Complex-Normal Latent Variable Model

5.1 Model

We assume we have recordings from K brain regions, and the activity of each brain region is
recorded by dk electrodes (1  k  K) over N repeated experimental trials. We assume that
each electrode records an oscillating signal at some frequency, and we band-pass filter the data to
extract this oscillating signal as a preprocessing step to obtain a complex number which represents

the phase and amplitude of the oscillation. For each trial n 2 [N ], the observation X
(n)
k

from brain

region k is a dk-dimensional complex-variate variable. We further assume that each X
[n]
k

is driven

by a univariate latent factor Z [n]
k

, which is also complex-variate, giving the model

X
[n]
k

= �kZ
[n]
k

+ ✏
[n]
k
, ✏

[n]
k

⇠ CN (0,�k, 0), (6)

Z = (Z1, . . . , Zk) ⇠ CN (0,�, 0), (7)

where �k 2 Cdk is the complex-variate factor loading, � 2 CK⇥K is the latent covariance matrix,

which is assumed to be positive definite, and ✏
[n]
k

2 Cdk is the region-specific noise with covariance
parameter �k 2 Cdk⇥dk , which also is assumed to be positive definite.

Using basic properties of the complex normal distribution, the marginal distribution of the

vector X [n] = (X [n]
1 , . . . , X

[n]
K

) of all the observed signals is given by

X
(n)

⇠ CN

0

BB@0,

0

BB@

�1�
H

1 �11 + �1 �1�
H

2 �12 �1�
H

3 �13 . . .

�2�
H

1 �21 �2�
H

2 �22 + �2 �2�
H

3 �23 . . .

�3�
H

1 �31 �3�
H

2 �32 �3�
H

3 �33 + �3 . . .

. . . . . . . . . . . .

1

CCA , 0

1

CCA . (8)

This representation shows that the model is non-identifiable without adding additional constraints.
In particular, �k can be scaled by an arbitrary complex number, and corresponding entries in �
scaled by the inverse conjugate of that number, and no change to the marginal distribution will
occur. Additionally, given an arbitrary real value a 2 R, we have that �k�

H

k
(�kk + a) + (�k �

a�k�
H

k
) = �k�

H

k
�kk + �k, indicating that, while �k � a�k�

H

k
is positive semidefinite, we can

add numbers to the diagonal of �kk and subtract a�k�
H

k
from �k and retain the same marginal

distribution. Thus, to ensure the identifiability of the parameters, we require that

1. �
H

k
�k = 1 and Im�k,1 = 0, where �k,1 is the first component of �k,

2. sup{a � 0 : �k � a�k�
H

k
⌫ 0} = 0.

To better understand the model, we show how it can produce maximum likelihood estimates
that are related to the solutions for a complex extension of canonical correlation analysis (CCA;
Hotelling, 1936). Bong et al. (2021) found that a real-valued latent variable model, which bears
some similarity to the method described here, could be viewed as a form of probabilistic CCA, first
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described in Bach and Jordan (2005). Because CCA has a distribution-free definition, the corre-
spondence we show below with an analogue of CCA for complex-valued random vectors provides a
similar distribution-free motivation for the estimation procedure we derive here.

If we observe a pair of real random vectors, Y1 2 Rd1 and Y2 2 Rd2 , CCA finds the set of
weights w1, w2 (where w1 2 Rd1 , w2 2 Rd2) which maximize |corr(w>

1 Y1, w
>
2 Y2)|. Kettenring (1971)

extended CCA to multiple vector observations. For (Y1 2 Rd1 , . . . , YK 2 RdK ), this so-called
“multiset CCA” finds the weights w1 2 Rd1 , . . . , wK 2 RdK maximizing a notion of the cross-
correlation among (w>

1 Y1, . . . , w
>
K
YK). Multiset CCA easily extends to complex-valued random

vectors, X1 2 Cd1 . . . , XK 2 CdK . In particular, we can write the optimization problem solved by
complex multiset CCA as

argmin
wk2Cd

k :k2[K],var(wH

k
Xk)=1 det{var(w

H

1 X1, . . . , w
H

KXK)}. (9)

The solution weights {wk,cc : k 2 [K]} that achieve the optimum of Equation (9) are called the
canonical weights and the resulting correlation matrix Pcc = corr(wH

1,ccX1, . . . , w
H

K,cc
XK) is called

the canonical correlation matrix. The sample estimates bwk,cc and bPcc are obtained by replacing

corr in Equation (9) with the sample version dcorr, based on the observed signals (X [n]
1 , . . . , X

[n]
K

)
during experimental trials n 2 [N ]. We now state a theorem describing the equivalence between the
canonical weights and correlation matrix and the maximum likelihood estimator of the parameters
in the model given in Equations (6) and (7) under the given identifiability constraints. The proof
is contained in Supplemental Section S1.

Theorem 12. Suppose that b�k, k 2 [K], and b� are the maximum likelihood estimators of the
parameters in Equations (6) and (7) under the given identifiability constraints, labelled as 1 and

2 following Equation (8), based on N observed tuples (X [n]
1 , . . . X

[n]
K

). Then, we have the following
equivalence between the maximum likelihood estimators and the canonical weights and correlation
matrix:

b�k =
cvar(Xk) bwk,cc

kcvar(Xk) bwk,cck2
, diag(b��1/2

kk
) b� diag(b��1/2

kk
) = bPcc, (10)

for k 2 [K], where diag(b��1/2
kk

) is the diagonal matrix consisting of entries b��1/2
kk

.

As a corollary of the theorem, if K = 2, then our model is equivalent to the pairwise CCA for two
complex random vectors, X1 2 Cd1 and X2 2 Cd2 . To demonstrate this equivalence, let us write

w1,cc, w2,cc = argmax
w12Cd1 ,w22Cd2 |corr(w

>
1 X1, w

>
2 X2)|, (11)

let ⇢cc be the resulting canonical correlation coe�cient, and let bwk,cc and b⇢cc be the corresponding
sample estimators. We can then state the following corollary.

Corollary 13. If b�1, b�2, and b� are the maximum likelihood estimators of Equations (6) and (7)
under the given identifiability constraints, then they are related to the weights and canonical corre-
lation values through the following equations:

b�1 =
cvar(X1) bw1,cc

kcvar(X1) bw1,cck2
, b�1 =

cvar(X2) bw2,cc

kcvar(X2) bw2,cck2
,

b�12q
b�11b�22

= b⇢cc. (12)

In the general case with greater than two latent factors, fitting the marginal likelihood directly
is an intractable optimization problem. Instead, we fit the model using the EM algorithm; we
describe our fitting procedure in Appendix B. In Figure S1, we provide evidence that, for simulated
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datasets similar to the real dataset we analyze in Section 6, the estimates provided by the EM
fitting procedure converge to the true parameters as the size of the dataset increases. Code for
performing inference and analysis with our model is available at (***).

In applying Theorem 12 to data in Section 6, we first band-pass filter the data, so that the
magnitude of the complex correlation becomes coherence (as discussed in Section 4.1) and we will
also decompose the covariance matrix to get partial coherence (Section 4.3).

5.2 Inference

We study the strength of the associations among the estimated latent factors in our model. To
do so, we develop a parametric bootstrap procedure to test for conditional dependence between
brain areas. Recall from Section 4 that for vectors distributed according to the complex normal
distribution, zero entries in the latent precision matrix correspond to conditional independence
relationships between the associated dimensions of the random vector. Therefore, for two regions
with indices r1, r2 2 [R], we want to test the null hypothesis H0 : ��1

r1,r2
= 0 against the alternative

hypothesis Ha : ��1
r1,r2

6= 0.
To employ the parametric bootstrap, we first estimate the parameters of the model on the

original dataset. Let ⇥ = {{�k : k 2 [K]}, {�k : k 2 [K]},�}, and let L(⇥;D) denote the likelihood
of the parameters under the model given by Equation (8) for dataset D = {X

[n] : n 2 [N ]}. We
first estimate ⇥ with the EM algorithm to obtain b⇥(D), our approximation of the MLE on dataset
D. Then, we optimize the likelihood with a modified EM algorithm under the additional constraint
that ��1

r1,r2
= 0 (see Appendix B for details on how we solve this optimization problem) to obtain

b⇥0(D). We then simulate datasets D
(b)

⇠ Pb⇥0
where 1  b  B and B is the total number of

bootstrap datasets. Let

�(D) =
L{b⇥0(D);D}

L{b⇥(D);D}

.

We can observe the quantile of the likelihood ratio statistic on the original data, �(D), rela-
tive to the set of likelihood ratio statistics on the bootstrapped datasets {�(D(b)) : b 2 [B]}
to obtain a p-value. We can also obtain confidence intervals for parameters of interest by em-
ploying the ordinary nonparametric bootstrap. The parameters we are most interested in are
contained in the latent correlation and conditional correlation matrices. We denote the latent
correlation matrix S = diag(�)�1/2�diag(�)�1/2 and the conditional correlation matrix D =
diag(��1)�1/2��1diag(��1)�1/2.

6 Data Analysis

We apply the techniques we have discussed so far to a dataset of local field potential (LFP) data
from the Allen Institute (Siegle et al., 2021). In the experiment, six electrode probes were simul-
taneously inserted into the mouse brain, with each probe targeting some area of visual cortex but
also recording from other regions. During the experiment, the mice were presented with a variety
of visual stimuli; here, we focus on presentations of drifting grating stimuli, which appear as bars
moving across a screen in the mouse’s field of view. In the interest of utilizing as much data as
possible, we ignore di↵erences in the direction and size of the stimuli presented. This gives us 630
trials.

The experimenters marked every electrode with the anatomical brain area in which it resided
during the experiment. We observed an oscillation at 6.5Hz in a variety of these areas. Therefore,
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Figure 4: An example of the application of the latent variable model to LFP data from the Allen
Institute is shown here. The entries in the correlation matrices are arranged consecutively according
to their vertical position in the inserted probe. The sample correlation for the real part of the data
as well as the sample correlation between the real and imaginary parts of the data are denoted
by corr(ReX) and corr(ReX, ImX). The estimated latent correlation matrix is denoted by bS,
and the estimated latent partial correlation matrix is denoted by bD. The notations |bS| and | bD|

denote the absolute value of each entry in the corresponding matrices. Electrodes are labeled by
the anatomical region in which they resided during the experiment. We observe that while the
estimated latent correlation matrix bS has large values between many regions, the estimated latent
partial correlation primarily has large values between two pairs of regions: DG and CA1, as well
as AM and PM.
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we band-pass filtered the LFP signal and then used the Hilbert transform to recover the analytic
signal. We selected a single time point, two seconds into the trial, which occurs well after the
stimulus disappears from the screen. Selecting this time point removes the influence of trial-locked
changes in brain activity. In addition, we used five electrodes from each of the six regions for which
we have data to form the set of time series we analyze.

Figure 5: Results of parametric bootstrap test performed on all pairs of regions to test if a significant
conditional correlation exists between each pair of areas. Numbers contained inside boxes in figure
are likelihood ratio statistics testing the hypothesis |Dij | > 0. Colors of each box represent results
of significance test for three values of ↵, the false-positive rate, where each significance test is done
with a Bonferonni correction for multiple comparisons. The level ↵ = .001 is the smallest we are
able to test given our simulation settings. The likelihood ratio values indicate that some pairs
would be significant at much smaller values of ↵. There are significant partial correlations between
most pairs of areas at ↵ = .001, except between DG and AM, as well as between V1 and CA1.

We then applied the latent variable model to this dataset. For all analyses, we used one latent
variable per brain area we analyze. Each brain area has multiple electrodes embedded that record
the LFP signals; these signals are the observed variables in our model. In Figure 4, we show
data from a single probe passing through four visual regions (AM, PM, V1, and LM) and two
hippocampal regions (CA1 and DG). We display the empirical correlation matrices of the observed
data as well as the latent correlation matrices and partial correlation matrices estimated using
our model. These matrices of latent correlation and partial correlations are of interest, since, as
discussed in Section 4, in our setting they are equivalent to the coherency and partial coherency
between regions. While the estimated latent marginal correlations are relatively large between
many areas, the estimated partial correlations (| bDij |) are strongest between two pairs of areas: AM
and PM, as well as CA1 and DG.

We perform the parametric bootstrap test discussed in Section 5.2 to study the significance of
the entries in the latent partial correlation matrix. In Figure 5, we plot the results of this analysis.
We observe significant correlations between the majority of pairs of areas in the 6.5Hz frequency.

To further understand how strong the correlations between these areas are, we report bootstrap
confidence intervals for the significantly nonzero parameters of the correlation and partial corre-
lation matrices in Figure 6. For nearly all pairs of regions, the partial correlations are of modest
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Figure 6: Point estimates and confidence intervals of correlations (blue) and partial correlations
(orange) for all pairs of regions with significantly nonzero latent partial correlations. All confidence
intervals have 95% coverage. The partial correlations are of modest size, and considerably smaller
than the corresponding marginal correlations, with the exception of the partial correlations for the
pairs PM-AM and DG-CA1, which are close to 1.

size, and substantially smaller than the corresponding marginal correlations. However, the pairs
PM-AM and DG-CA1 have large partial correlations, close to 1. Also of interest are the patterns
of association of area LM. Note that the strength of the correlation between LM and CA1 is larger
than the correlation between LM and any other visual region, suggesting that LM has stronger
oscillatory associations at the 6.5Hz frequency with hippocampal regions than with other visual
regions, despite LM itself being a visual region.

7 Discussion

We began with two separate goals, and ended by merging them. On the one hand, we wanted to see
whether the multivariate complex normal distribution might be useful in analyzing co-dependence
among groups of oscillating time series. On the other hand, we wished to better understand complex
correlation. Our investigation built on existing literature concerning dependence among complex
random variables, and complex normal variables in particular, to uncover several interesting rela-
tionships that were either not known previously, or not spelled out clearly. For complex random
vectors we reviewed the distinction between partial correlation and conditional correlation (Baba
et al., 2004), which are equivalent for real random vectors, and we showed that they again coincide
under normality. We phrased many of our theorems in terms of the general form of complex nor-
mality, including both covariance and pseudo-covariance, then specialized to the proper case where
pseudo-covariances vanish. We showed that in the proper case pairwise conditional independence
coincides with zero partial correlation, as it does for real multivariate normal distributions; and
partial coherency may be considered partial complex correlation at a given frequency. These facts
are important for analytic interpretation, as we demonstrated in our real data example.

The scientific backdrop for our work in analysis of neural data is one of the most pressing
problems for statistics in neurophysiology, that of identifying coordinated activity across two or
more regions of the brain based on multiple recordings, here multiple time series, in each region,
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that are highly nonstationary but are repeated many times across many experimental trials. When
there are many repetitions of multiple recorded values in two regions at a single time point, canonical
correlation analysis provides a solution to the problem of determining their dependence. In the
two-region case, we showed that maximum likelihood estimation for our latent variable model
produces a form of latent coherence as the magnitude of complex canonical correlation; it produces
a generalized canonical correlation in the multi-region case.

The latent coherencies, and partial coherencies, from our latent variable model are not computed
in the frequency domain but are obtained instead in the time domain, with band-pass filtering in
a narrow band. For this we leaned on a key observation by Ombao and Van Bellegem (2008) that
“band coherence” (a version of coherence written in terms of integrals over the band) could be
interpreted as the magnitude of complex correlation of two signals. We used our results for the
complex normal distribution to interpret the complex correlations and partial correlations we found
in the data.

Part of understanding coherence requires comparing it to Phase-Locking Value (PLV), which
we had generalized to the multivariate setting with torus graphs. The original motivation for
PLV was discomfort with the dependence of coherence on amplitude (Lachaux et al., 1999). Like
PLV, torus graphs ignore amplitude variation and any possible cross-covariation between ampli-
tudes and phases. Thus, torus graphs might be considered models of covariation among phases
after marginalizing over amplitudes. The complex normal results characterizing torus graphs as
conditional distributions after conditioning on amplitudes show that even though the graphical
structure (the conditional independence structure) of torus graphs does not depend on amplitude,
calibration of the magnitude of interaction e↵ects apparently depends on the amplitudes. When
the amplitudes are roughly constant, coherence and PLV provide essentially equivalent results (see
Appendix S2 and Lepage and Vijayan, 2017).

The results we found in the data are striking, and intriguing. There are large partial coherences
in two pairs of areas, one involving higher visual areas (AM and PM, the anterior and posterior
parts of the medial visual area, which are further downstream than primary visual cortex, V1)
and the other involving the hippocampus (CA1 and DG, the dentate gyrus). Each of these pairs
involves areas that are contiguous, but that alone does not explain their interaction because all
of these areas share anatomical boundaries with some other areas. In the case of CA1 and DG,
these are the only hippocampal areas in these data. The coherence in AM and PM could indicate
close collaboration in neural processing, and may be worth further investigation. In addition, we
observe stronger coherences between LM and hippocampal regions than between LM and other
visual regions, which could also be a subject of further investigation.

Often there are dozens of time series in each region, and latent variable models are attractive
ways to reduce dimensionality for examining cross-region interactions. In unpublished work (***),
a hierarchical model based on torus graphs has been used to describe large numbers of phase
measurements made in each of several brain areas. This hierarchical structure has the advantage
of reducing the total number of parameters, which results in better statistical inference when the
amount of data is small in comparison to its dimensionality. To assess time-varying amplitude
interaction, Bong et al. (2021) developed a time-series generalization of a factor analysis model,
using one latent factor for each region. They allowed for non-stationarity and included all relevant
time-lagged cross-correlations. They first showed how the model leads to a time series generalization
of probabilistic CCA, based on multiset CCA (analogous to Theorem 12 here). Because of the non-
stationarity, each combination of time point in one region and time point in the other region could
have its own unique correlation across trials, which made the covariance matrix have a large number
of free parameters. The authors adapted sparse estimation methods to solve the high-dimensional
inference problem and showed how it produced interpretable and interesting results when applied
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to their data. Closely-related work may be found in Bong et al. (2020).
It would be possible to apply the approach here at many time points, which would be relatively

straightforward but does not include time lags, as in Bong et al. (2021). It would also be possible
to estimate partial coherence, even at a single point, using a latent multivariate time series model,
but this would require either a very high-dimensional formulation along the lines of Bong et al.
(2021) or a specific time series model, both of which have their own challenges.

To simplify interpretation it was important for us to assume the complex normal distributions
were proper. In our data, this seemed to be a reasonable assumption, and in all the data we’ve
examined using torus graphs, reflectional dependence is, similarly, either absent or di�cult to
detect. Perhaps future uses of the complex normal distribution, along the lines outlined here, will
reveal situations in which pseudo-covariances need to be considered. The substantial additional
complication of such cases would likely present new challenges, but we hope the framework we have
summarized here would provide a useful starting point.
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Appendices

A A Note on the Hilbert Transform

Here we provide an overview of the Hilbert transform which is commonly used to recover phase and
amplitude from oscillating signals (Cohen, 2014). Let X(t) = ReX(t) + ◆ImX(t) be the output of
a complex signal that has been filtered in a band (!0� �,!0+ �). We only observe ReX(t), and the
problem is to recover X(t), which is possible when � is su�ciently small. The Hilbert transform
operates on ReX(t) to produce ImX(t) according to

ImX(t) = p.v.

Z
ReX(s)

⇡(t� s)
ds, (13)

where the integral is over the domain of t. The notation p.v.
R
f(t)dt denotes the Cauchy principal

value; this formula is given in numerous sources (e.g., Pandey, 2011), but because we have not seen
a concise derivation we provide one here.

Let us write the Fourier transforms of X(t) and its complex conjugate X(t) as F(X) and F(X),
and the evaluation of such transforms at a frequency ! by F(X)(!), etc. From the general relations

ReX(t) =
1

2
{X(t) +X(t)}, ImX(t) = �

◆

2
{X(t)�X(t)},

we have the Fourier transforms

F(ReX) =
1

2
{F(X) + F(X)}, F(ImX) = �

◆

2
{F(X)� F(X)}.

Because F(X)(!) is, from the band-pass filtering, concentrated around !0, and F(X)(!) is concen-
trated around �!0, when ! > 0 the formula above gives F(ReX)(!) = F(X)(!)/2 and, similarly,
when ! < 0, F(ReX)(!) = F(X)(!)/2. Thus, using sgn(!) to denote the sign of !, when we
multiply F(ReX)(!) by �◆ sgn(!) we get

{�◆ sgn(!)}F(ReX)(!) = F(ImX)(!).

As a result, the convolution ReX(t) ⇤ F�1
{�◆ sgn(!0)} satisfies

ReX(t) ⇤ F�1
{�◆ sgn(!)} = ImX(t).

Inserting the formula for F�1
{�◆ sgn(!0)} into the definition of convolution produces Equation (13),

giving the Hilbert transform of ReX(t). The resulting X(t) is called the analytic signal.

B Fitting Procedure for the Latent Factor Model in Section 5

In this appendix, we discuss the procedure of fitting the latent factor model (Equations (6) and (7))

in Section 5 to the data {X
[n]
1 , . . . , X

[n]
K

}n=1,...,N from N independent repeated observations. We
provide estimates of the model parameters �, �k and �k using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). The EM algorithm starts with initial estimates for the

parameters, denoted by �(0), �(0)
k

, and �(0)
k

, and iteratively updates the estimates to optimize the
likelihood through alternating E-steps and M-steps, which we will describe next. We denote the

estimates after the rth update by �(r), �(r)
k

, and �(r)
k

.

23



At the (r + 1)th iteration, the E step calculates the su�cient statistics of the latent factors

{Z
[n]
1 , . . . Z

[n]
K

} conditional on the observed data {X
[n]
1 , . . . , X

[n]
K

} and the parameter estimates �(r),

�
(r)
k

, and �
(r)
k

after the rth iteration. Because the full joint probability density of the observed data
and the latent factors given the rth parameter estimates is

p(X,Z;�(r),�(r)
k

,�(r)
k

) /
1

det(�(r))
exp

⇣
�Z

H�(r)�1
Z

⌘

⇥

KY

k=1

 
1

det(�(r)
k

)
exp

n
�(Xk � �

(r)
k

Zk)
H�(r)�1

k
(X [n]

k
� �

(r)
k

Zk)
o!

,

where Z = (Z1, . . . , ZK) is the concatenation of the latent factors. Further,

E(Z | X,�(r),�(r)
k

,�(r)
k

) = (�(r)�1 +D
(r))�1

V
(r)

,

var(Z | X,�(r),�(r)
k

,�(r)
k

) = (�(r)�1 +D
(r))�1

,

pvar(Z | X,�(r),�(r)
k

,�(r)
k

) = OK ,

where D
(r) is a diagonal matrix with entries D

(r)
kk

= �
(r)H
k

�(r)�1
k

�
(r)
k

, V
(r) is a vector of el-

ements V
(r)
k

= �
(r)H
k

�(r)�1
k

Xk, and OK is the K ⇥ K zero matrix. For brevity, we denote

E(Z [n]
| X

[n]
,�(r),�(r)

k
,�(r)

k
) and var(Z [n]

| X
[n]
,�(r),�(r)

k
,�(r)

k
) by E[n](r) and var(r). (We note

that var(r) is invariant for n 2 [N ].)
In the M step, we find the parameters maximizing the expectation of the full log-likelihood

function with respect to both {X
[n]
}n and {Z

[n]
}n conditional on {X

[n]
1 , . . . , X

[n]
K

}n, �(r), �
(r)
k

, and

�
(r)
k

. The conditional expectation of the full log-likelihood function for the model is

E

✓
`(�,�k,�k; {X

[n]
, Z

[n]
}n)

����X,�(r),�(r)
k

,�(r)
k

◆

/

NX

n=1

2

6664

� ln det(�)� tr
n
��1(var(r)+E[n](r) E[n](r)H)

o

+
KX

k=1

n
� ln det(�k)�X

[n]
k
��1
k

X
[n]
k

+ E
[n](r)
k

�
H

k
X

[n]
k

+ (X [n]
k

)H�kE
[n](r)
k

� tr
⇣
��1
k

var(r)
kk

⌘o

3

7775
.

The parameters are complex-valued, so we use Wirtinger calculus to take derivatives. Using
formulas from Adali et al. (2011), we take derivatives and set them equal to zero, to achieve the
following update steps:

�(r+1) = var(r)+
1

N

NX

n=1

E[n](r) E[n](r)H
,

e�(r+1)
k

=

P
n
X

[n]
k

E
[n](r)
k

P
n
(var(r)

kk
+E[n](r)

k
E
[n](r)
k

)
,

�(r+1)
k

= var(r)
kk

�
(r+1)
k

(�(r+1)
k

)H +
1

N

NX

n=1

(X [n]
k

� �
(r+1)
k

E[n](r)
k

)(X [n]
k

� �
(r+1)
k

E[n](r)
k

)H .

We also have the identifiability constraints �
H

k
�k = 1, Im�k(1) = 0, and sup{a � 0 : �k �

a�k�
H

k
⌫ 0} = 0. To produce estimates which satisfy these constraints, we utilize the following
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procedure. First, we adjust the elements of b� and b�k so that �
H

k
�k = 1, Im�k(1) = 0; this can

be accomplished by multiplying rows and columns in b� and the b�k vectors by a complex-valued
scalar. To ensure that sup{a � 0 : �k � a�k�

H

k
⌫ 0} = 0, we solve a convex optimization problem

by maximizing a under the constraint that �k � a�k�
H

k
⌫ 0. We then subtract ab�k b�H

k
from b�k and

add a to �kk.
We use a method of moments procedure to obtain starting values for the EM algorithm, a

strategy that has been shown theoretically to often result in near-optimal parameter estimates
(Balakrishnan et al., 2017). To do so, we start by computing the sample covariance matrix over
the data. Then, we first estimate the parameter vectors �k by examining the sub-matrices given

by dcov(X [n]
k

, X
[n]
i

). In particular, because under the correct model specification, we have that

cov(X [n]
k

, X
[n]
i

) = �ki�k�H

i
, we can take any column ofdcov(X [n]

k
, X

[n]
i

), and re-normalize it according
to the identifiability constraints to obtain an estimate of �k. We do this, and then average over all
of the corresponding columns to get an overall estimate of �k. Once �i,�j have been estimated, it

is then straightforward to obtain estimates of �ij dividing the entries indcov(X [n]
i

, X
[n]
j

) by those in

�i�
H

j
.

Now we briefly address our strategy for parameter estimation under a null hypothesis, as is
done in the inference method we introduce. Under the null hypothesis, we are assuming that some
entry of the latent precision matrix ��1

ij
= 0. To satisfy this assumption, we need to modify our

estimation procedure. Observe that the conditional expectation of the log-likelihood depends on �
through

� ln det�� tr{��1(var(r)+E
[n](r)

E
[n](r)H)}.

Thus, we need to optimize this expression over � under the constraints that ��1
ij

= 0 while
ensuring that � remains a Hermitian PSD matrix. Fortunately, this is a convex optimization
problem, and while there is no explicit expression for the optimal � under these constraints, we
can solve this problem numerically using a convex optimization package. Then, we can estimate
the remaining variables using the explicit formulas given above.

B.1 Proof of Theorem 12

Let uk = S
�1/2
kk

�k�
1/2
kk

and  k = S
�1/2
kk

�kS
�1/2
kk

, where Sk` = �k�k`�H

`
+ �k�k` is each sub-matrix

of the marginal covariance matrix S of (X1, . . . , XK) and �k` = 1 if k = ` and 0 otherwise, for
k, ` 2 [K]. Then the second identifability constraint can be rewritten as uH

k
uk = �

H

k
S
�1
kk

�k�kk = 1
and

u
H

k
 kkuk = �1/2

kk
�
H

k
S
�1
kk
�kS

�1
kk

�k�
1/2
kk

= �1/2
kk

�
H

k
S
�1
kk

(Skk � �k�kk�
H

k
)S�1

kk
�k�

1/2
kk

= �
H

k
S
�1
kk

�k�kk � (�H

k
S
�1
kk

�k�kk)
2

= 1� 12 = 0, k 2 [K].

That is, uk is orthogonal to  kk. Denoting the block diagonal matrix of {Skk : k 2 [K]} by V , we
have that R = V

�1/2
SV

�1/2 consists of sub-matrices

Rk` = S
�1/2
kk

Sk`S
�1/2
``

= uk�
�1/2
kk

�k`�
�1/2
kk

u
H

`
+ k�k`.

Due to the orthogonality between uk and  k, the calculation of det(R) and R
�1 is straightforward:

det(R) = det(⌦)/
Q

k
pdet( k) and Q = R

�1 consists of sub-matrices

Qkl = uk⌦klu
H

`
+ +

k
�k`,
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where ⌦ = diag(�1/2
kk

)��1diag(�1/2
kk

) is the inverse correlation matrix and pdet(A) and A
+ are the

pseudo-determinant and Moore–Penrose pseudo-inverse of a positive semi-definite matrix A. Notice
that  k = I � uku

H

k
=  +

k
and hence pdet( k) = 1. In turn, the negative log-likelihood under

the model (Equations (6) and (7)) of the parameter set {�} [ {�k,�k : k 2 [K]} with respect to

observed time-series {X [n]
1 , . . . , X

[n]
K

}n=1,...,N is

nll(�,�k,�k; {X
[n]
1 , . . . , X

[n]
K

}n=1,...,N )

= ln det(S) + tr(S�1 bS)

= � ln det(⌦) +
X

k

ln pdet( k) +
X

k

ln det(Skk) + tr(⌦ bP ) +
X

k

tr( +
k
S
�1/2
kk

bSkkS
�1/2
kk

)

= � ln det(⌦) + tr(⌦ bP ) +
X

k

h
ln det(Skk) + tr{(S�1

kk
� wkw

H

k
}bSkk)

i
,

where
bP = cvar

⇥
(wH

k
Xk : k 2 [K])

⇤
, bSkl =dcov[Xk, Xl], wk = S

�1/2
kk

uk,

and cvar and dcov indicate the sample variance and covariance operators, for k, ` 2 [K]. The

maximum likelihood estimator minimizes nll(✓; {X [n]
1 , . . . , X

[n]
K

}n=1,...,N ) with respect to S
�1
kk

:
w

H

k
Skkwk = 1. That is,

r
S
�1
kk

nll = Skk �
bSkk = Skkwk�kw

H

k
Skk, 9�k 2 R,

for all k 2 [K]. Because w
H

k
Skkwk = 1,

1� w
H

k
bSkkwk = w

H

k
Skkwk � w

H

k
bSkkwk = w

H

k
Skkwk�kw

H

k
Skkwk = �k.

Therefore, the two terms ln det(Skk) and tr((S�1
kk

� wkw
H

k
)bSkk) may be rewritten as

ln det(Skk) = � ln(1� �k) + ln det(bSkk),

tr((S�1
kk

� wkw
H

k
)bSkk) = tr((S�1

kk
� wkw

H

k
)(Skk � Skkwk�kw

H

k
Skk)) = dk � 1.

The maximum likelihood estimation problem then reduces to minimizing

nll(⌦, wk,�k; {X
[n]
1 , . . . , X

[n]
K

}n=1,...,N ) = � ln det(⌦)�
X

k

ln(1� �k) + tr(⌦ bP ),

with the restriction that that diag(⌦�1) = 1. Let w0
k
= wk/

p
1� �k, ⌦0 = diag(

p
1� �k) ⌦ diag(

p
1� �k),

and bP 0 = cvar[(w0
k

H
Xk : k 2 [K])]. Then, the likelihood can be rewritten as

nll(⌦0
, w

0
k
; {X [n]

1 , . . . , X
[n]
K

}n=1,...,N ) = � ln det(⌦0) + tr(⌦0 bP 0),

which is maximized when ⌦0 = bP 0�1 given w
0
k
is fixed for k 2 [K]. Thus, maximum likelihood

estimation is equivalent to finding w
0
k
minimizing ln det( bP 0) under w

0
k

H bSkkw
0
k
= 1 for k 2 [K],

which is the GENVAR procedure of Kettenring (1971).
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