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ABSTRACT

We address the null paradox in epidemic models, where standard methods estimate a non-zero
treatment effect despite the true effect being zero. This occurs when epidemic models mis-specify
how causal effects propagate over time, especially when covariates act as colliders between past inter-
ventions and latent variables, leading to spurious correlations. Standard approaches like maximum
likelihood and Bayesian methods can misinterpret these biases, inferring false causal relationships.
While semi-parametric models and inverse propensity weighting offer potential solutions, they often
limit the ability of domain experts to incorporate epidemic-specific knowledge. To resolve this, we
propose an alternative estimating equation that corrects for collider bias while allowing for statistical
inference with frequentist guarantees, previously unavailable for complex models like SEIR.
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1 Introduction

In this paper we consider the problem of inferring the causal effects of time-varying interventions in epidemics. Our
goal is to examine epidemic models through the lens of causal inference. In particular, we study the consequences of
the common practice of adding an intervention A directly into an epidemic model, for example, by letting the model for
the reproduction number depend on A. The term intervention can refer to control measures, treatments, public health
policies or spontaneous changes in population behavior such as reduced mobility. Such interventions often change over
time, often depending on the state of the epidemic. For example, we may want to estimate the effect of vaccinations,
masks or social mobility on the number of infections or number of hospitalizations.

As an example, consider the usual SIR model due to Kermack and McKendrick (1927) which is given by three
differential equations

dSt

dt
= −βItSt

Nt

dIt
dt

=
βItSt

Nt
− γIt

dRt

dt
= γIt

(1)

for t > 0, where St is the number of susceptibles at time t, It is the number of new infections at t, Rt is the number of
removed and Nt = St + It +Rt is the total population size. In many cases, we do not observe (St, It, Rt) but rather
we observe another variable Yt which could be reported cases, hospitalizations, deaths, etc. This requires a further



model p(yt|It) relating Yt to infections It. The negative binomial distribution is a common choice. To include an
intervention At we could, for example, replace β with βt = βeδAt where δ is the parameter that modulates the effect of
At on the subsequent number of infections (and therefore on Yt).

Another example is the discretized SEIR model (Lekone and Finkenstädt, 2006; Gibson and Renshaw, 1998; Mode and
Sleeman, 2000) which models susceptibles St, exposed Et, infecteds It and removed Rt by

St+h = St −Bt

Et+h = Et +Bt − Ct

It+h = It + Ct − Yt
Rt+h = Rt + Yt

(2)

where St + Et + It +Rt = Nt, Bt ∼ Binomial(St, pB,t), Ct ∼ Binomial(Et, pC), Yt ∼ Binomial(It, pY ), and

pB,t = 1− exp
{
− ηt
N
hIt

}
, pC = 1− e−ηh, pY = 1− e−γh.

In this model, h represents the time interval (for example h = 1 day), Bt denotes the number of susceptibles who
become infected, Ct is the number of cases, and Yt is the number of removed cases. The parameters are the transmission
rate βt, the mean incubation period 1/η and the mean infectious period 1/γ. To include an intervention At we could,
for example, replace ηt with η(At;β) = e−β1−βAAt .

We will refer to models that are modified to include an intervention as augmented epidemic models. In the language of
causal inference, these are models for counterfactuals. That is, they are models that are used to specify the effect of the
intervention on the outcome. We might use such a model to answer a question like: how many cases would there be if
we locked down for 2 weeks?

In the epidemic modeling literature, the parameters of these models are usually estimated by interpreting the model as a
model for the data generating process. Then one can use maximum likelihood or Bayesian methods. But data generating
models and counterfactual models are, in general, not the same thing. They coincide if there are no confounding
variables but otherwise they can be quite different. In that case maximum likelihood estimates can be biased.

In the causal literature, two methods are available for correctly estimating the parameters of the counterfactual model.
The first (and simplest) is to use an estimating equation instead of likelihood based methods. The second is to construct
a joint distribution that is consistent with the counterfactual model using, for example, the Evans-Didelez (2023) frugal
parameterization. This permits likelihood based inference but requires many more modeling assumptions. Our main
goal is to explain why using estimating equations to estimate the parameters of the model can have advantages over the
common practice of using the maximum likelihood estimate or Bayes estimate.

Paper Outline In Sections 2 and 3 we provide brief backgrounds for causal inference and for common types of
epidemic models, including the semi-mechanistic model and SEIR model of main interest here. Specifically we apply
the g-formula to derive the mean causal effect of an intervention when using these models. In Section 4 we combine
causal inference and epidemic models and describe how their parameters are estimated. In Section 5 we explain why
the ubiquitous g-null paradox phenomenon arises and how our estimation approach provides remedies to it. Finally, we
present empirical examples based on simulated and observational data in Section 6 and conclude in Section 7.

2 Background on Causal Inference

Putting aside epidemic models for a moment, we now review some background on causal inference.

First, consider a single outcome Y and a binary treatmentA ∈ {0, 1}. The counterfactual Y (a) is the value the outcome
Y would take if the intervention A were set to a. Thus, we now have four random variables (A, Y, Y (0), Y (1)) where
Y (0) is the value Y would have if A = 0 and Y (1) is the value Y would have if A = 1. These counterfactuals are
linked to the observed data (A, Y ) by the equation Y = Y (A). If A = 1 then Y = Y (1) but Y (0) is unobserved. If
A = 0 then Y = Y (0) but Y (1) is unobserved. Many causal questions are quantified by these counterfactuals. For
example, E[Y (1)] − E[Y (0)] is used to quantify the causal effect of the treatment. It can be shown that if there are
no confounding variables — variables that affect Y and A — then P (Y ≤ y|A = a) = P (Y (a) ≤ y) so that the
distribution of the counterfactual Y (a) is the same as the conditional distribution of the observable Y . But if there are
confounding variables X then it can be shown (under three conditions described below) that

P (Y (a) ≤ y) =

∫
P (Y ≤ y|A = a,X = x)dP (x)
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and in general, P (Y ≤ y|A = a) ̸= P (Y (a) ≤ y).

Now consider observed time series data on a subject of the form

(X1, A1, Y1), . . . , (XT , AT , YT )

where At is some intervention at time t, Yt is the outcome of interest at time t and Xt refers to potential confounding
variables which might affect At and Yt. We use overbars to represent histories such as At = (A1, . . . , At). Again we
introduce the counterfactual Yt(at) which is the value Yt would have had the treatment sequence been at = (a1, . . . , at)
rather than the actual observation At = (A1, . . . , At). For example, suppose that at = 1 means that the subject wore a
mask and at = 0 means that the subject didn’t wear a mask. Then Yt(0, 0, . . . , 0) is the outcome at time t if the subject
never wore a mask. (In some literature, E[YT (aT )] is denoted by E[YT |do(AT = aT )].) Causal inference requires
three conditions:

(A1) No interference: if At = at then Yt(at) = Yt.

(A2) Positivity: π(at|xt−1, at−1) > ϵ > 0 for all values, where π(at|xt−1, at−1) is the density of At given the past.

(A3) No unmeasured confounding: the variable Yt(at) is independent of At given the past measured variables.

Assumption (A1) means that the observed Yt is equal to the counterfactual Yt(at) if the observed treatment sequence At

happens to equal at. This means a subject’s outcome is affected by their treatment but not affected by another subject’s
treatment. Assumption (A2) means that, conditional on the past, every subject has nonzero probability of receiving
treatment at any level. Assumption (A3) means that we have measured all important confounding variables, which are
variables that affect the treatment and the outcome.

In this setting, and under assumptions (A1)-(A3), Robins (1986) proved that

E[Yt(at)] = ψ(at)

where

ψ(at) =

∫
· · ·

∫
E[Yt|xt, yt−1, at]

t∏
s=1

p(xs, ys|hs)dxsdys (3)

where hs = (xs−1, as−1, ys−1) is the history before time s. Equation (3) is known as the g-formula. Note that, in
general,

E[Yt(at)] ̸= E[Yt|At = at]

which is the difference between causation (the left hand side) and correlation (the right hand side). In what follows,
we will often write ψ(at; θ) where θ denotes any parameters that are involved. The g-formula above is for the mean
but there are similar expressions for densities, cdf’s, quantiles etc. In particular, let p∗(yt; at) denote the density of
counterfactual Yt(at) evaluated at a point yt. Then

p∗(yt; at) =

∫
· · ·

∫
p(yt|xt, yt−1, at)

t∏
s=1

p(xs, ys|hs)dxsdys. (4)

Again, the causal density p∗(yt; at) should not be confused with the usual conditional p(yt|at). The causal effect in
Eq. (3) is the mean of p∗(yt; at),

E[Yt(at)] =
∫

· · ·
∫
µ(xt, yt−1, at)

t∏
s=1

p(xs, ys|hs)dxsdys

where µ(xt, yt−1, at) = E[Yt|xt, yt−1, at].

The g-formula has a graphical interpretation. Starting with a directed graph G such as Fig. 1(a), form a new graph G∗

in which all arrows pointing into any As, s ≤ t, are removed and in which any As is fixed at a value as; see Fig. 1(b).
Equation (4) is then the marginal density for Yt corresponding to the density in the graph G∗.

It is common in the causal inference literature for the user to specify a simple, interpretable model called a marginal
structural model (MSM). For example, one might take

ψ(at; θ) = θ0 + θ1

t∑
s=1

as (5)
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· · · Xt−1 At−1 Yt−1 Xt At Yt · · ·

Ut−1 Ut

(a)

· · · Xt−1 at−1 Yt−1 Xt at Yt · · ·

Ut−1 Ut

(b)

Figure 1: (a) The directed graph of the type of models we consider. Latent variables are indicated with pink nodes.
Importantly, we allow unobserved variables Ut as long as they do not directly affect At. (b) The intervention graph
after setting At = at.

which says that the mean of Yt(at) is a linear function of the cumulative dose
∑t

s=1 as. This is not a model for the
data generating process, and it is possible to estimate the parameters of a MSM without completely specifying the data
generating process using an estimating equation, as we explain later. Instead, this approach is akin to specifying a
regression model for the effect of at on Yt, except that this must be done having observed (At, Yt). We never observe
the counterfactuals Yt(at) except for the one observed case at = At. This means that such models are not data driven
but user specified, and they are not typically evaluated for goodness-of-fit.

3 Epidemic Causal Models

While semi-parametric marginal structural models such as Eq. (5) have been applied to epidemic data (Bonvini et al.,
2022), they often limit the ability of domain experts to incorporate epidemic-specific knowledge. Instead, we interpret
the augmented epidemic model as defining a model for the counterfactual Yt(at). It seems, in fact, that this is how
augmented models are intended to be interpreted. For example, it is common to do scenario predictions from an
epidemic model by fixing at and simulating from the model. In other words, we use the augmented model to answer
questions like: what would happen if we set At to be at? This is precisely what a counterfactual is. Throughout the
paper, we maintain the assumption that the augmented epidemic model defines a model for the counterfactuals Yt(at).

As always, it should be understood that the model ψ(at; θ) is at best an approximation. More precisely, we are
estimating the projection of E[Yt(at)] onto the model M = {ψ(at; θ) : θ ∈ Θ}.

Now we discuss the details of obtaining ψ(at; θ) from an augmented epidemic model. We start with an example where
it can be obtained in closed form.
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Example 1 (Semi-mechanistic Model). We consider a version of the semi-mechanistic epidemic model from Bhatt et al.
(2022): for parameter β ≡ (β1, βA),

E[It|At, It−1, Y t−1] = R(At, β)
∑
s<t

gt−sIs

E[Yt|At, It, Y t−1] = αt

∑
s<t

πt−sIs
(6)

where
R(At, β) =

K

1 + exp(β1 + βAAt)
, (7)

K is the maximum transmission rate, π is the infection to death distribution and g is the generating distribution. A
different version takes

E[It|At, It−1, Y t−1] =
∑
s<t

eβ1+βAAsgt−sIs. (8)

We call these the multiplicative and exponential versions. For fixed values of At, αt, g and π, this model is a pair of
linear equations and is an example of a structural equation model (SEM).

Meaningful dynamics in this model requires some positive infections It prior to time t = 1. Bhatt et al. (2022) assumed
It = 0 for t ≤ −T0 and It = eµ for t = −T0 + 1, . . . , 0, where µ is a parameter to be estimated and T0 = 6. Let
I0 ≡ (I−T0+1, . . . , I0) indicate those seeding values in the infection process. (We still exclude those seeding values in
the definition of It = (I1, . . . , It).)

For the exponential model define

Λe =


0 0 · · · 0

g1e
β1+βAa1 0 · · · 0

g2e
β1+βAa1 g1e

β1+βAa2 · · · 0
...

...
...

...
gt−1e

β1+βAa1 gt−2e
β1+βAa2 · · · 0

 , Λe
0 =


gT0

eβ1+βAa−T0+1 · · · g1e
β1+βAa0

gT0+1e
β1+βAa−T0+1 · · · g2e

β1+βAa0

gT0+2e
β1+βAa−T0+1 · · · g3e

β1+βAa0

...
...

...
gT0+t−1e

β1+βAa−T0+1 · · · gte
β1+βAa0

 ,

and for the multiplicative model define

Λm =


0 0 · · · 0

g1R(a2, β) 0 · · · 0
g2R(a3, β) g1R(a3, β) · · · 0

...
...

...
...

gt−1R(at, β) gt−2R(at, β) · · · 0

 , Λm
0 =


gT0

R(a1, β) · · · g1R(a1, β)
gT0+1R(a2, β) · · · g2R(a2, β)
gT0+2R(a3, β) · · · g3R(a3, β)

...
...

...
gT0+t−1R(at, β) · · · gtR(at, β)

 .

Finally, define

Π =


0 0 · · · 0

π1α2 0 · · · 0
π2α3 π1α3 · · · 0

...
...

...
...

πt−1αt πt−2αt · · · 0

 , Π0 =


πT0

α1 · · · π1α1

πT0+1α2 · · · π2α2

πT0+2α3 · · · π3α3

...
...

...
πT0+t−1αt · · · πtαt

 .

Then the marginal structural model ψ(at; θ) is given in a closed form as follows.
Theorem 3.1. For the exponential model,

E[It(at)] = [(id− Λe)−1Λe
0I0]t (9)

and
E[Yt(at)] = [{Π(id− Λe)−1Λe

0 +Π0}I0]t, (10)
where the subscript t represents the t-th element of the outcome vector. For the multiplicative model, the expressions
are the same except that Λm and Λm

0 replace Λe and Λe
0.

Proof. Consider the intervened graph in Fig. 1(b) with At set to at. For this graph, we have

It(at) = ΛeIt(at) + Λe
0I0 + ϵ,
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for the exponential model (Eq. (8)), which, as mentioned above, is a linear structural equation model. Now

It(at) = (id− Λe)−1Λe
0I0 + (id− Λe)−1ϵ

and hence, the last element of this vector is

E[It(at)] = [(id− Λe)−1Λe
0I0]t.

Subsequently,

E[Y t(at)] = ΠE[It(at)] + Π0I0 = [{Π(id− Λe)−1Λe
0 +Π0}I0]t.

The proof proceeds similarly for the multiplicative model (Eq. (6)), but with Λm and Λm
0 in place of Λe and Λe

0.

The General Case. In general, writing down ψ(at; θ) is not possible. Instead, we approximate it by Monte Carlo for
each value of θ. We fix At fixed at at. Now we simulate Y1, . . . , YT from the augmented epidemic model parameterized
with θ. We repeat this simulation N times giving values Y (k)

1 , . . . , Y
(k)
T for k = 1, . . . , N . Then we set

ψ(at; θ) ≈
1

N

N∑
k=1

Y
(k)
t . (11)

This approach is very simple albeit computationally expensive.

4 Estimation

Now we discuss the estimation of the parameters θ.

No Confounding Case. First suppose there are no confounding variables. In this case, Pθ(Yt(at) ≤ y) = Pθ(Yt ≤
y|At = at). Thus, the augmented model not only provides a model for the counterfactuals, it also provides a model for
the observed data Y1, . . . , YT . Specifically, it defines

Gt,θ(y|At = at, Y t = yt) = Pθ(Yt ≤ y|At = at, Y t = yt).

One way to estimate θ is to maximize the likelihood

L(θ) =
∏
t

pθ(yt|at, yt−1)

where pθ(yt|at, yt−1) = G′
t,θ(y|At = at, Y t = yt) is the density of Yt. When pθ is not available in closed form we

can estimate the likelihood using simulation based inference (SBI) (Gourieroux and Monfort, 1993). (One can also
combine the likelihood with a prior and get the Bayes estimate.)

Alternatively, we can define θ̂ to be the solution of the estimating equation

1

T

∑
t

ht(At) (Yt − ψθ(at)) Wt = 0

where

Wt =

t∏
s=1

π(As|As−1)

π(As|As−1, Y s−1)
,

π(at|at−1, yt−1) is the density of At given the past and ψθ(at) = Eθ[Yt(at)]. The function ht(At) is an arbitrary
function of At whose choice affects the standard deviation of the estimator. For simplicity, we take ht(At) = 1.

In principle, the mle is optimal in parametric models and the estimator from the estimating equation might have larger
variance than the mle. The advantage of using the estimating equation is that the estimator is robust to the presence of
certain unobserved variables called phantoms; we explain this point in Section 5.
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Confounding Case. Now suppose there are confounding variables X1, . . . , XT . These are variables that affect both
the Yt’s and the At’s. In this case, it is no longer true that that the distribution of the counterfactuals Yt(at) is equal to
the conditional distribution of the observables Yt. In this case, the estimating equation still provides a valid way to
estimate θ.

We estimate θ by solving the estimating equation∑
t

(Yt − ψθ(at))Wt = 0 (12)

where

Wt =

t∏
s=1

π(As|As−1)

π(As|As−1, Y s−1, Xs−1)

and π(at|at−1, yt−1, xt−1) is the density of At given the past.

Solving Estimating Equations. To solve the estimating equations in Eq. (12), we apply Newton’s method, which
requires the computation of the first derivative of the left-hand side of the equation with respect to the parameter of
interest. Specifically, since β is the key parameter in both the semi-parametric model (Eq. (6)) and the SEIR model
(Eq. (2)), we provide detailed calculations for the derivative with respect to β.
Example 2 (Derivative for the Semi-mechanistic Model). In Example 1, we derived the closed-form expression for the
marginal structural model ψ(at; θ) in the multiplicative semi-mechanistic model as:

ψ(at; θ) = [{Π(id− Λm)−1Λm
0 +Π0}I0]t.

For each element βi of the parameter vector β (either β1 or βA), the first derivative of Λm with respect to βi is given by:

∂

∂βi
Λm(t, s) = gt−s

∂

∂βi
R(at, β)1{t > s},

where Λm(t, s) is parameterized by the rate function R(at, β), and 1{t > s} is an indicator function. Similarly, the
derivative of Λm

0 with respect to βi follows the same structure.

Using the identity from matrix calculus, ∂U−1

∂x = −U−1 ∂U
∂xU

−1, we can express the derivative of ψ(at; θ) with respect
to βi as:

∂

∂βi
ψ(at; θ) =

[{
Π(id− Λm)−1 ∂Λ

m

∂βi
(id− Λm)−1Λm

0 +Π(id− Λm)−1 ∂Λ
m
0

∂βi

}
I0

]
t

=

[
Π(id− Λm)−1

{
∂Λm

∂βi
E[It(at)] +

∂Λm
0

∂βi
I0

}]
t

.

The derivative for exponential model is given similarly.
Example 3 (Derivative for the SEIR Model). The SEIR model does not admit a closed-form expression for the marginal
structural model ψ(at; θ). In Eq. (11), we proposed estimating this quantity through Monte Carlo approximation for
each given θ. Here, we describe how the derivative of this approximation can also be computed using Monte Carlo
samples.

First, by applying the g-formula, we have:

ψ(at; θ) = Eθ[Yt(at)]

=

∫
· · ·

∫
E[Yt|Bt−1, Ct−1, Y t−1]

t−1∏
s=1

dPYs
(Ys|Bs−1, Cs−1, Y s−1)

× dPCs
(Cs|Bs−1, Cs−1, Y s−1)× dPBs

(Bs|Bs−1, Cs−1, Y s−1),

where PYs , PCs , and PBs are binomial random variables. The "number of trials" parameters for these variables depend
on the conditioning terms Bs−1, Cs−1, and Y s−1, with success probabilities denoted by pY , pC , and pB , respectively.
Importantly, only pB,s, and consequently PBs

, are parametrized by β through η(as;β).

Now, suppose we have Monte Carlo samples {(B(k)

T , C
(k)

T , Y
(k)

T ) : k = 1, . . . , N} drawn under the parameter β. For
any alternative parameter β′, we approximate the g-formula using importance sampling as follows:

ψ(at;β
′) ≈ 1

N

N∑
k=1

E[Y (k)
t |B(k)

t−1, C
(k)

t−1, Y
(k)

t−1]

t−1∏
s=1

dPBs|β′

dPBs|β
(Bs|B

(k)

s−1, C
(k)

s−1, Y
(k)

s−1),

7



where
dPBs|β′

dPBs|β
is the Radon–Nikodym derivative. Note that when β′ = β, the importance sampling estimator reduces to

the Monte Carlo approximation for ψ(at;β) as given in Eq. (11).

Next, to compute the derivative of ψ(at;β) with respect to β, we recognize that the derivative of the Radon–Nikodym

derivative
dPBs|β′

dPBs|β
at β′ = β is simply the gradient of the log-likelihood, i.e., ∇β log{fBs|β(Bs|B

(k)

s−1, C
(k)

s−1, Y
(k)

s−1)}.
By applying the chain rule, we obtain:

∇βψ(at;β) ≈
1

N

N∑
k=1

E[Y (k)
t |B(k)

t−1, C
(k)

t−1, Y
(k)

t−1]

t−1∑
s=1

∇β log{fBs|β(Bs|B
(k)

s−1, C
(k)

s−1, Y
(k)

s−1)}.

Inference. Under some conditions, we have that
√
T (θ̂ − θ)⇝ N(0,Σ)

for a positive definite matrix Σ. Moreover, we can estimate Σ consistently from the data. See, for example, De Jong

(1997); De Jong and Davidson (2000); Andrews (1991, 1988); Newey et al. (1987). Then θ̂j ± zα/2

√
Σ̂j,j is an

asymptotic 1− α confidence interval for θj .

5 Phantoms and the Null Paradox

An additional reason for recommending to use estimation equations is due to variables we refer to as phantoms.
Phantoms are unobserved variables that affect the Yt’s but not the At’s; they are not confounding variables. Phantoms
are very likely to exist, and they pose a serious problem because they make likelihood based methods inconsistent
(Robins, 1986; Robins and Wasserman, 1997a).

It may be shown that phantoms do not alter the g-formula at all. But they cause problems for maximum likelihood and
Bayesian methods. In particular, even if the At’s have no causal effect, the maximum likelihood estimator will show a
non-zero effect. Robins called this the g-null paradox.

To see a specific example of this, suppose we model the observables in Fig. 2(a) as:

E[U1] = 0,E[A0] = 0,

X1 = αUU1 + αAA0 + ϵX ,

A1 = γXX1 + γAA0 + ϵA,

Y1 = βAA1 + βXX1 + βUU1 + ϵY ,

where βA is the true causal effect of A on I . Now if we were to observe data Y1, we would fit the model

Y1 = θAA1 + θXX1 + δY ,

to estimate θA, the effect of A1 on Y1. If Y1 depends on A1 then θA must be nonzero. If A1 has no causal effect on
Y1 then θA must be zero. But what if both are true? What if (i) Y1 depends on A1 but (ii) there is no causal effect?
The reason Y1 can be dependent on A1 even when there is no causal effect, is the presence of phantoms. Consider the
directed graph in Fig. 2(b) from Robins and Wasserman (1997b), Bonvini et al. (2022) and Bates et al. (2022). Because
there are no arrows from the A0 and A1 to Y1, there is no causal effect and it is easy to show that the distribution of
Y1(a0, a1) does not depend on (a0, a1). However, the variable X1 is a collider — it has two arrows converging. From
standard directed graph calculations, this implies that Y1 is dependent on A0 and A1 given X1. That is p(y1|x1, a0, a1)
is a function of (a0, a1). Thus we have precisely the situation where Y1 has conditional dependence on the treatment
but there is no causal effect.

However, the model cannot represent this situation. Indeed, no finite dimensional parametric model can model (i) and
(ii). The reason we cannot model (i) and (ii) simultaneously is that the model is not variation independent: dependence
and causation are tied together in the parameterization of the model. The ML and Bayes estimates (which are estimating
the Kullback-Leibler (KL) projection of the distribution onto the model) are driven strongly by the dependence between
Y1 and A1, rather than by the causal effect. So when both (i) and (ii) hold, both these the estimates will be nonzero even
though there is no causal effect. In fact, because U1 = − α0

αU
A0 +

1
αU
X1 − 1

αU
ϵX ,

Y1 = βAA1 + (βX +
1

αU
βU )X1 −

αA

αU
βUA0 + (ϵI −

1

αU
ϵX)

= (βA − 1

γA

αA

αU
βU )A1 + (βX +

1

αU
βU +

γX
γA

αA

αU
βU )X1 + (ϵI −

1

αU
ϵX +

1

γA

αA

αU
βU ϵA),

(13)
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A0 X1 A1 Y1

U1

(a)

A0 X1 A1 Y1

U1

(b)

Figure 2: The effect of phantoms. The latent variable U is not a confounder as it has no arrows to A0 or A1. The
variable X1 is a collider, meaning that two arrowheads meet at X1. This implies that Y1 and (A0, A1) are dependent
conditional on X1. In (b), neither A0 nor A1 have a causal effect on Y1, but the estimate of the parameters that relate Y1
to (A0, A1) in the epidemic model will be non-zero.

which no longer involves the phantom variable. Hence, the MLE of θA estimates βA − 1
γA

αA

αU
βU , which is biased for

the true causal effect βA. There is phantom bias.

To summarize, this problem is due to three things: phantoms, which enable (i) and (ii) to both be true (see Section 5),
variation dependence, which is a property of the model, and the fact that the KL projection is driven by dependence.

We can illustrate the problem as follows. Let θ represent some measure of conditional dependence and let β denote the
causal effect. Then

θ ̸= 0 but β = 0︸ ︷︷ ︸
phantoms

=⇒ θ̂ ̸= 0︸ ︷︷ ︸
KL projection

=⇒ β̂ ̸= 0︸ ︷︷ ︸
variation dependence

.

The fact that in the real world we can have dependence but no causal effect and the model cannot represent this, means
that the model is misspecified. If Θ0 denotes the parameter values that correspond to no causal effect and Θ+ denotes
the parameter values that correspond to conditional dependence, we have that Θ0

⋂
Θ+ = ∅. This problem is well

known in causal inference. It is called the g-null paradox and affects any sequentially parameterized causal model
(models that parameterize the distribution of each variable given the past). This was first pointed out by Robins (1986)
and has received much attention since then; see, for example, Robins and Wasserman (1997b), Bates et al. (2022),
Robins (2000), Babino et al. (2019) and Evans and Didelez (2024). It appears that the problem has gone unnoticed in
the literature on modeling epidemics.

Our estimating approach using estimation equation in Section 4 suggests a remedy. For example, under the model of
Fig. 2(a), if we use the estimating equation approach instead, the counterfactual from the model is:

ψ(a0, a1; θ) =

∫
(θAa1 + θXx1)pX1

(x1|a0)dx1

= θXαAa0 + θAa1,

which yields the estimating equation

E
[
(I1 − ψ(A0, A1; θ))h(A0, A1)

π(A0)π(A1|A0)

π(A0)π(A1|X1, A0)

]
=

∫
(βAa1 + βXx1 − θXαAa0 − θAa1)h(a0, a1)π(a0, a1)pX1

(x1|a0)dx1da1da0

=

∫
(βXαAa0 + βAa1 − θXαAa0 − θAa1)h(a0, a1)π(a0, a1)da1da0.

Setting the estimating equation to zero for any h yields (θ0, θ1) = (β0, β1) (and θX = βX ). Hence the estimating
equation yields an unbiased estimate of the causal effect βA. There is no phantom bias. We have focused on the
relationship between It and the At’s but similar comments apply to Yt.

6 Examples

The first two examples illustrate that phantoms variables induce bias in parameter estimated via ML, but that using
estimating equations instead yields unbiased estimates. The last example is an analysis of the effect of a certain measure
of mobility on Covid-19 deaths in 30 US states at the start of the pandemic.
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Figure 3: Generating distribution g from Bhatt et al. (2022).

6.1 Semi-mechanistic model simulated data

We now turn to a more realistic epidemic model. We simulate epidemic time series consistent with the DAG in Fig. 1(a),
as follows. For t = 1, . . . , 120, we

1. simulate phantoms Ut from a Gaussian random process with mean zero and covariance kernel Σ(t, s) = ϕ|t−s|,
with ϕ = 0.95;

2. sample confounders Xt from a Gaussian distribution with variance σ2 and mean ϵI + ζUUt + ζXXt−1 +
ζAAt−1 + ζIIt−1, where (ϵI , ζU , ζX , ζA, ζI) = (0, 0.2, 0, 1, 0) and σ2 = 0.09;

3. generate binary interventions At from a Bernoulli distribution with

P(At = 1 | Xt, At−1, It−1) =
eγ1+γXXt+γAAt−1+γIIt−1

1 + eγ1+γXXt+γAAt−1+γIIt−1
,

where (γ1, γX , γA, γI) = (−2.5, 0, 4, 0.001);
4. simulate an infection process It from a negative binomial distribution with “number of successes” parameter
ν = 10 and mean parameter specified in Eq. (6) – the mean of the semi-mechanistic model with generating
distribution g in Fig. 3 and

R(At, β) =
K

1 + exp(β1 + βUUt + βXXt + βAAt)
,

where K = 6.5 is the maximum transmission rate. We consider 21 linearly spaced values of βA in [−1, 0],
and for each value, we set (β1, βU , βX) = (− log(5.5) + 0.5− βA/2, 0.3, 0), which has the effect of keeping
R(At, β) in the same ballpark for all values of βA.
Because g has substantial support on up to 40 time points, we seed the time series as follows: It = 0 for
t ≤ −40 and It = eµ for t = −39, . . . , 0, where µ = log(100) (Bhatt et al., 2022; Bong et al., 2023). (An
alternative would be to simulate infections prior to t = 1, but we chose to proceed as we would with observed
data.)

5. Finally, we simulate an observed time series Yt – e.g. cases or deaths – according to Eq. (6) with αt = 1 and
πt = 1{t = 1}, for simplicity, so that Yt = E[Yt | It−1, Y t−1, At] ≡ It−1 for all t.

For each βA, we simulated 200 times series Yt from the model, and for each, we obtained the MLEs of the β’s using
the package freqepid, assuming Yt negative binomial with semi-mechanistic model mean (Eq. (6)) and reproduction
number R(At, β) =

K
1+exp(β1+βXXt+βAAt)

. Fig. 4(a) shows the averages of the 200 MLEs of βA for each true βA,
along with 95% confidence intervals. There is phantom bias.

This bias is absent in the results under the same simulation conditions, except with βU set to zero, as shown in Fig. 7.
This observation confirms that the bias in Fig. 4(a) is due to the presence of phantom variables.

Next, we estimated βA using the estimating equation (Eq. (12)) from the same simulation. For this, we employed the
multiplicative semi-mechanistic model with the rate function R(At, β) =

K
1+exp(β1+βAAt)

. This model has closed-form
expressions for both ψθ(at) and its derivative ∇βψθ(at), as derived in Examples Example 1 and Example 2. Using
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(a) (b)

Figure 4: (Left) ML estimate of βA averaged across 200 repeat simulations (blue dots) with 95%-confidence
intervals (error bars), for a range of true βA values. There is phantom bias. (Right) Corresponding estimating
equation estimates. We used the estimating equation implied by the semi-mechanistic model (Eq. (9)).

these results, we solved the estimating equation via Newton’s method. To address confounding, we modeled the
propensity score for At using a logistic regression based on At−1, It−1, and Xt. From 200 i.i.d. estimates for each
βA, we computed 95% confidence intervals, and Fig. 4(b) presents the results for 21 different true values of βA. These
results demonstrate that the estimates obtained from the estimating equations are unbiased, even in the presence of
phantom variables.

6.2 SEIR model simulated data

We demonstrate the same using the SEIR model in Eq. (2). First, we set I0 = 100, E0 = 0 and S0 = N − I0 − E0,
where the total population N was set 100, 000. Then for t = 1, . . . , 120, we

1. simulate phantoms Ut from the same Gaussian random process as the previous example;
2. sample confounders Xt from a Gaussian distribution with variance σ2 and mean ϵI + ζUUt + ζXXt−1 +
ζAAt−1 + ζY Yt−1, where (ϵI , ζU , ζX , ζA, ζY ) = (0, 0.5, 0, 1, 0) and σ2 = 0.09;

3. generate binary interventions At from a Bernoulli distribution with

P(At = 1 | Xt, At−1, It−1) =
eγ1+γXXt+γAAt−1+γY Yt−1

1 + eγ1+γXXt+γAAt−1+γY Yt−1
,

where (γ1, γX , γA, γD) = (−2.5, 0, 4, 100/N);
4. simulate an exposure processBt from a binomial distribution with number of trials St−1 and success probability

pB,t = 1− exp(−ηtIt−1/N),

where ηt = exp(−β1 − βUUt − βXXt − βAAT − βY Yt−1). We consider 21 linearly spaced values of βA in
[−1, 0], and for each value, we set (β1, βU , βX) = (1− βA/2, 0.3, 0), which has the effect of keeping ηt in
the same ballpark for all values of βA.
Then, St = St−1 −Bt.

5. simulate an infection processCt from a binomial distribution with number of trialsEt−1 and success probability
pC = 0.2.
Then, Et = Et−1 +Bt − Ct.

6. Finally, we simulate an observed time series Yt from a binomial distribution with number of trials It−1 and
success probability pY = 0.2.
Then, It = It−1 + Ct − Yt.

For each value of βA, we simulated 200 time series Yt from the SEIR model. Since we do not have a developed method
for estimating the MLE in this setting, we instead used a regressive approach to estimate the β parameters. Specifically,
for each iteration, we fit a binomial regression model:

Bt ∼ Binomial(St−1, exp(−θ1 − θXXt − θAAt + log(It−1/N))),
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(a) (b)

Figure 5: (Left) ML estimate of βA averaged across 200 repeat simulations (blue dots) with 95%-confidence
intervals (error bars), for a range of true βA values. There is phantom bias. (Right) Corresponding estimating
equation estimates. We used the estimating equation implied by the SEIR model (Eq. (2)).

where log(It−1/N) was included as a log-offset in the regression. This approximates the generation of the exposure
process by using that 1− exp(−ηtIt−1/N) ≈ ηtIt−1/N when the right hand side is sufficiently small. Fig. 5(a) shows
the average regressive estimates of βA over the 200 simulations for each true value of βA, along with the corresponding
95% confidence intervals. A phantom bias is evident in the estimates.

Next, we estimated βA using the estimating equation approach (Eq. (12)) on the same simulated data. In this approach,
the SEIR model was parameterized as ηt = exp(−β1 − βAAt). Since this model lacks a closed-form expression
for ψθ(at) and its derivative ∂

∂βψθ(at), we employed Monte Carlo approximations to compute them as described in
Eq. (11) and Example 3, and solved the estimating equation using Newton’s method. To account for confounding, we
modeled the propensity score ofAt using a logistic regression model based onAt−1, It−1, andXt. The 95% confidence
intervals were derived from 200 independent estimates for each βA. Fig. 5(b) presents the results for 21 true βA values,
showing that the estimates from the estimating equations are unbiased, even in the presence of phantom variables.

6.3 We Estimate the Causal Effect of Mobility on Covid-19 Transmission

We analyzed the effect of a mobility measure on Covid-19 death data for U.S. states, using the dataset described in Bong
et al. (2023). The data are sourced from the Delphi repository at Carnegie Mellon University (delphi.cmu.edu), and
consist of daily observations from February 15 to August 1, 2020 (168 days). The dataset includes state-level records of
Covid-19 deaths, denoted as Yt, and a mobility measure, “proportion of full-time work” (At), which represents the
fraction of mobile devices that spent more than six hours at a location other than their home during daytime (using
SafeGraph’s full_time_work_prop). We focused on the 30 states that reported more than 20 deaths on at least one
day and truncated the time series 30 days prior to reaching a total of 10 accumulated deaths, following the procedure
outlined in Bhatt et al. (2022). A preprocessing step was used to correct for the weekend effect, which shows fewer
deaths reported on Saturdays and Sundays (see Bong et al. (2023) for further details).

Figure 6(a) presents the estimates of βA from the estimating equation in Eq. (12), assuming the semi-parametric model
(Eq. (6)) for the 30 states. The faint thick lines show the point estimates and 95% confidence intervals, calculated
separately for each state’s data. These estimates can be improved by borrowing strength across states using a frequentist
approach based on the robust empirical Bayes shrinkage method introduced by Armstrong et al. (2022), and extended
to multivariate parameters by Bong et al. (2023). The dark thin lines represent the shrinkage-adjusted estimates. We
also compare these results with the maximum likelihood (ML) estimates from Bong et al. (2023), based on the same
semi-parametric model, assuming negative binomial (NB) distributed death counts. All 30 states show differences in the
estimates within the 95% confidence intervals between the estimating equation and ML approaches. Specifically, in 24
out of 30 states, the estimates from the estimating equation were lower than those from ML. This result is statistically
significant, assuming a binomial probability of 0.5 for the two methods yielding smaller estimates equally across all
states (p < 0.001). This suggests the potential presence of a phantom effect, where the ML estimates may overestimate
the global causal effect of mobility on Covid-19 deaths.
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(a) (b)

Figure 6: Estimates and confidence intervals for βA in Eq. (7) for 30 states using (a) estimating equation and (b)
ML. The faint thick lines are the estimates and intervals before shrinkage and the dark thin lines after shrinkage.

7 Conclusion

Augmenting an epidemic model to include an intervention variable is quite common. We have seen that such a model
is best viewed as a model for counterfactual random variables. This makes it possible to use the model to answer
causal questions about the effect of an intervention on an epidemic. We have argued that the best way to estimate the
parameters in such a model is to use an appropriate estimating equation. Maximum likelihood and Bayesian methods
are less useful as they are susceptible to certain biases due to latent variables. In particular, these methods can lead to
rejecting the null hypothesis that there is no causal effect, even when the null is true.

There are many other subtleties involved in causal inference in the context of modeling epidemics. Yet the literature on
combining methods of modern causal inference with epidemic modeling is sparse. This paper is meant as a first step in
this direction.
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Appendix

Figure 7: Point estimates (blue dots) and 95%-confidence intervals (error bars) of βA from the ML estimates
without phantom variables . For each true βA value, the point estimate and confidence interval were obtained from
200 i.i.d. estimates β̂A. The ML estimates are unbiased when phantom variables are absent.
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