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In this work, we provide a 1/
√
n-rate finite sample Berry–Esseen bound

for m-dependent high-dimensional random vectors over the class of hyper-
rectangles. This bound imposes minimal assumptions on the random vectors
such as nondegenerate covariances and finite third moments. The proof uses
inductive relationships between anti-concentration inequalities and Berry–
Esseen bounds, which are inspired by the classical Lindeberg swapping
method and the concentration inequality approach for dependent data. Per-
forming a dual induction based on the relationships, we obtain tight Berry–
Esseen bounds for dependent samples.

1. Introduction. Recent advances in technology have led to the unprecedented avail-
ability of large-scale spatiotemporal data. An important challenge in the analyses of such
data is to provide a theoretical guarantee of statistical inferences under temporal dependence.
Many existing theoretical studies, such as Liu (2020), relied on parametric or distributional
assumptions to give a valid confidence interval, but the validity of the assumptions remains
questionable in real-world applications. Central limit theorems (CLTs) provide one of the
most general methods of statistical inference based on Gaussian approximation. To account
for high dimensional data in real-life applications, there has been a recent surge of work on
CLTs with increasing dimensions. Unlike the multivariate Berry–Esseen bounds which can
control the difference between the probabilities associated with the average of random vec-
tors and the corresponding Gaussian for arbitrary convex sets, in high dimensions, one needs
to restrict the class of sets to a class of “sparse” sets such as hyper-rectangles. Although
most of the literature (Norvaiša and Paulauskas, 1991; Chernozhukov, Chetverikov and Kato,
2013, 2017a; Deng and Zhang, 2020; Lopes, Lin and Müller, 2020; Fang and Koike, 2020;
Chernozhukov, Chetverikov and Koike, 2020; Kuchibhotla and Rinaldo, 2020; Kuchibhotla,
Mukherjee and Banerjee, 2021; Koike, 2021; Lopes, 2022; Chernozhuokov et al., 2022; Cher-
nozhukov et al., 2023) is focused on independent observations, some works have also con-
sidered extensions of high-dimensional CLTs to the important case of dependent data in-
cluding m-dependence, dependency graphs, and physical/functional dependence (Zhang and
Wu, 2017; Zhang and Cheng, 2018; Chang, Chen and Wu, 2021; Kojevnikov and Song, 2022)
Dependent data CLTs are very crucial for applications in Econometrics and causal inference
(under interference).

In this paper, we focus on high-dimensional CLTs over the class of hyper-rectangles. That
is, our objective is to bound the Kolmogorov-Smirnov statistic between a summation of sam-
ples X1, . . . ,Xn ∈Rp and its Gaussian approximation Y , denoted by

µ (
∑n

i=1Xi, Y )≡ sup
r∈Rp

|P[
∑n

i=1Xi ∈Ar]− P[Y ∈Ar]| ,

where Ar ≡ {x ∈ Rp : x ⪯ r} and for two vectors a, b ∈ Rp, a ⪯ b means that ak ≤ bk for
every k ∈ [p]. For independent samples, there has been a flurry of novel results since the
seminal work of Chernozhukov, Chetverikov and Kato (2013). A popular approach has been
the Lindeberg interpolation, leading to an n−1/6 rate (Bentkus et al., 2000; Lopes, 2022).
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Recently, Kuchibhotla and Rinaldo (2020) used a recursion method over the Lindeberg
interpolation to establish a high-dimensional Berry–Esseen bound for independent random
variables with the rate at most (log3 n log8(ep)/n)1/2 under minimal assumptions: nondegen-
erate covariances and finite third moments of the observations. We highlight their use of the
inductive relationship between anti-concentration inequalities and Berry–Esseen bounds. The
importance of anti-concentration inequalities in proving Berry–Esseen bound has been well-
acknowledged in the literature. Bentkus et al. (2000) showed explicitly how the dependence
of anti-concentration inequalities on p affects that of Berry–Esseen bounds. While the past lit-
erature on CLTs for independent observations mainly used bounds for Kolmogorov-Smirnov
statistic in terms of anti-concentration inequality, a novel contribution of Kuchibhotla and
Rinaldo (2020) was an (implicit) formulation of the backward relationship: induction of anti-
concentration inequalities from Berry–Esseen bounds. We extend this idea to include a bound
for anti-concentration in terms of the Kolmogorov-Smirnov statistic and demonstrate how the
dual induction obtains the tight Berry-Esseen bounds.

In addition, our work extends this approach to m-dependent cases, where Xi⊥⊥Xj if |i−
j|>m. While previous work has demonstrated this rate for univariate cases (Shergin, 1980;
Chen and Shao, 2004), the tightest rate known in high-dimensional cases is 1/n1/6 for sub-
exponential random vectors (Chang, Chen and Wu, 2021). Our paper improves upon this by
providing an enhanced Berry–Esseen bound under a more generalized setting called m-ring
dependence. We introduce this setting in Section 2 and present our main results in Section 3,
which showcase the optimal scaling of 1/

√
n under non-degenerate covariance and finite

third moments. To establish these results, we used a combination of the Lindenberg swapping
technique and the dual induction argument, overcoming the challenges posed by the m-ring
dependence structure; the outline is provided in Section 5. We extensively compare our results
to existing works under independence andm-dependence in Section 3.1. Finally, in Section 4,
we conclude our paper by summarizing the main findings and outlining avenues for future
research.

2. Random vectors with m-ring dependence. We start with introducing a slight gener-
alization of m-dependence as follows: X1, . . . ,Xn ∈Rp are said to have m-ring dependence
if Xi⊥⊥Xj for any i and j satisfying min{|i − j|, n − |i − j|} > m. If X1, . . . ,Xn is m-
dependent, then

min{|i− j|, n− |i− j|}>m ⇒ |i− j|>m ⇒ Xi⊥⊥Xj .

This implies that X1, . . . ,Xn is also m-ring dependent. In other words, m-dependence is a
special case of the m-ring dependence. Let Y1, . . . , Yn be jointly Gaussian random vectors
with mean zero and the same second moment as X1, . . . ,Xn. i.e.,

Var[(Y ⊤
1 , . . . , Y

⊤
n )⊤] = Var[(X⊤

1 , . . . ,X
⊤
n )

⊤].

For subset I ⊆ {1,2, . . . , n}, define

XI := {Xk : k ∈ I}, YI := {Yk : k ∈ I}.

and

XI :=
∑
k∈I

Xk, YI :=
∑
k∈I

Yk. (1)

To streamline our discussion, we introduce notation for index intervals. For any values of i
and j that satisfy 1≤ i < j ≤ n, we will denote the index set {i, . . . , j} as [i, j]. Specifically,
when referring to the complete index set of n random vectors, we will use [1, n]. To align
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with the conventions of real intervals, we will employ parentheses to represent open-ended
intervals; e.g., (1, n] denotes the set {2, . . . , n}. For any I ⊂ [1, n], let σmin,I and σI be

σ2min,I :=min
k∈[p]

Var[Y
(k)
I ], and σ2I := λmin(Var[YI |YIC ]),

where the superscript Y (k)
I notates each k-th element of p-dimensional random vector YI (as

defined in Eq. (1)), and IC is the index set complement. i.e., IC ≡ [1, n] \ I . We note that the
conditional variance is given by the Schur complement of the marginal covariance matrix:

Var[YI |YIC ] = Var[YI ]−Cov[YI ,vec(YIC)]Var[vec(YIC)]
−1Cov[vec(YIC), YI ],

where vec(YIC) indicates the vectorized representation by concatenation. i.e., vec(YIC) ≡
(Y ⊤
k : k ∈ IC)⊤. In case m = 0, i.e., X1, . . . ,Xn are independent, then Var[YI |YIC ] =

Var[YI ]. Also, for q ≥ 1, let Lq,i and νq,i be

Lq,i := max
k

E[|X(k)
i |q] +max

k
E[|Y (k)

i |q], and νq,i := E[∥Xi∥q∞] +E[∥Yi∥q∞]. (2)

Denote the averages of Lq,i’s and νq,i’s by

Lq =
1

n

n∑
i=1

Lq,i and νq =
1

n

n∑
i=1

νq,i. (3)

For any subset I ⊂ [1, n], let

Lq,I =
1

|I|
∑
j∈I

Lq,j and νq,I =
1

|I|
∑
j∈I

νq,j . (4)

We note that due to Jensen’s inequality, ν2,i ≤ ν
2/q
q,i for i ∈ [1, n] and ν2 ≤ ν

2/q
q for any q ≥ 2.

Notation. In the following argument,C(. . . ) is a constant with implicit dependency on the
parameters in the parentheses, whose value changes across lines. For absolute constants with
no dependency, we omit the parentheses and denote them by C . 1 stands for the vector with
elements 1 in the appropriate dimension at each line. I{·} denotes the indicator function.

3. High-dimensional Berry–Esseen bound for m-ring dependent random samples
with nondegenerate covariance matrices. In this section, we state a high-dimensional
Berry–Esseen bound for random vectors with m-ring dependence and nondegenerate covari-
ance matrices. That is, the minimum eigenvalues of sums of consecutive samples are bounded
away from 0. We assume the existence of constants σmin, σ > 0 such that for all I = [i, j] or
[j,n]∪ [1, i] with some 1≤ i < j ≤ n,

σ2min,I ≥ σ2min · |I|, (MIN-VAR)

σ2I ≥ σ2 ·max{|I| − 2m,0}, (MIN-EV)

σmin ≤ σ
√

log(4ep)/2, (VAR-EV)

where |I| is the number of elements in I . The assumption of strongly non-denegerate covari-
ance (i.e., λmin(Var[Xi]) is bounded away from zero) has been commonly used in high-
dimensional CLTs under independence (Kuchibhotla and Rinaldo, 2020; Chernozhukov,
Chetverikov and Koike, 2020; Fang and Koike, 2021; Lopes, 2022). Building upon these
works, Assumptions (MIN-VAR) and (MIN-EV) extend the assumption to m-dependence
cases in the same spirit with Assumption (3) in Shergin (1980). It is also worth noting that
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by subtracting 2m from the interval length, Assumption (MIN-EV) allows for the possibil-
ity of complete dependence between X[i,j] and the adjacent elements when the interval [i, j]
is sufficiently short (e.g., |[i, j]| ≤ 2m). Assumption (VAR-EV), on the other hand, is not
present in previous CLTs. However, removing this assumption does not significantly impact
the resulting Berry–Esseen bound; see Remark 3.3 for more details.

THEOREM 3.1. Suppose that Assumptions (MIN-VAR), (MIN-EV) and (VAR-EV) hold.
Then, if m= 1 and q ≥ 3,

µ
(
X[1,n], Y[1,n]

)
≤ C log(en)

σmin

√
log(pn)

n

[
L3

σ2
log2(ep) +

(
νq
σ2

log2(ep)

)1/(q−2)
]
,

for some universal constant C > 0.

The steps and details of the proof for a simplified version can be found in Section 5.
However, the complete proof necessitates an additional technique that will be explained in
Section 5.6. For the comprehensive proof, please refer to Appendix A.3.

The dimension complexity of the convergence (in distribution) induced by the above the-
orem is worth noting. For convergence to zero of µ(X[1,n], Y[1,n]), Theorem 3.1 requires

max

{
L
2
3

σ2minσ
4
log5 p,

ν
2/(q−2)
q

σ2minσ
4/(q−2)

(log p)4/(q−2)

}
= o(n).

The dimension complexity may vary depending on the problem or random variables of inter-
est due to the dependency on p of νq,j ≡ E[∥Xj∥q∞] +E[∥Yj∥q∞], which changes with the tail
behavior of Xj . For instance, in the case of sub-Gaussian Xj , the dimension complexity is
determined by the first term, and the requirement becomes log5 p= o(n).

Under independence, the best-known dimension complexity in the literature for the same
setting was log4 p = o(n) (see Chernozhukov, Chetverikov and Koike, 2020, Corollary 2.1;
hereafter, we cite this paper by CCK20). Considering the negligible distinction between 1-
dependence and independence for large n, the difference in the dimension complexity is
nontrivial. The key difference lies in the different settings of the two results. Only requiring
q ≥ 3, our result applies even with a finite third moment ofXj , while CCK20 require the finite
fourth moment. Assuming higher-order moments to be finite has been shown to improve the
resulting Berry–Esseen bounds. For example, Fang and Koike (2020) demonstrated how the
Berry–Esseen bound for convex sets improved assuming finite fourth moments compared
to Bentkus (2005) based on finite third moments. The following result provides such an
improvement of Theorem 3.1 when q ≥ 4.

THEOREM 3.2. Suppose that Assumptions (MIN-VAR), (MIN-EV) and (VAR-EV) hold.
Then, if m= 1 and q ≥ 4,

µ
(
X[1,n], Y[1,n]

)
≤ C log (en)

σmin

√
log(pn)

n

[
L3

σ2
log3/2(ep) +

L
1/2
4

σ
log(ep) +

(
νq
σ2

)1/(q−2)

log(ep)

]
,

for some constant C > 0.
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The proof follows the same steps as outlined in Section 5, with the addition of a tech-
nique that will be described in detail in Section 5.4. The complete proof can be found in
Appendix A.4.

Now Theorem 3.2 induces the following dimension complexity:

max

{
L
2
3

σ2minσ
4
log4 p,

L4

σ2minσ
2
log3 p,

νq2/(q−2)

σ2minσ
4/(q−2)

log3 p

}
= o(n).

In the case of sub-Gaussian Xj , the dimension complexity is log4 p= o(n), which matches
that of CCK20. In Section 3.1.1, we will explain how the dimension complexities were ob-
tained and compare the theorems under independence and different tail behaviors of Xj .

REMARK 3.3. Assumption (VAR-EV) is not commonly found in the existing litera-
ture and may be considered restrictive in many practical applications. However, the Berry-
Esseen bounds in Theorems 3.1 and 3.2 still hold even without this assumption. In the
absence of the assumption, the factor C/σmin in Theorems 3.1 and 3.2 is replaced by
C/min{σmin, σ

√
log(ep)}; see Section 5.5 for a detailed explanation of the changes in the

proof.

The Berry-Esseen bounds for m > 1 can be obtained as corollaries of Theorems 3.1
and 3.2 using an argument from Theorem 2 of Shergin (1980); also, see Theorem 2.6 of Chen
and Shao (2004). Let n′ = ⌊n/m⌋, X ′

i =X((i−1)m,im] for i ∈ [1, n′) and X ′
n′ =X((n′−1)m,n].

We define Y ′
i similarly for i ∈ [1, n′]. Then, X ′

1, . . . ,X
′
n′ are 1-dependent random vectors in

Rp. By applying Theorems 3.1 and 3.2 to µ(X ′
[1,n′], Y

′
[1,n′]) = µ(X[1,n], Y[1,n]), we obtain the

following corollary.

COROLLARY 3.4. Suppose that Assumptions (MIN-VAR), (MIN-EV), and (VAR-EV)
hold and that m> 1. If q ≥ 3,

µ
(
X[1,n], Y[1,n]

)
≤ C log (en/m)

σmin

√
log(pn/m)

n

[
(m+ 1)2

L3

σ2
log2(ep) +

(
(m+ 1)q−1 νq

σ2
log2(ep)

)1/(q−2)
]
,

for some universal constant C > 0. If q ≥ 4,

µ
(
X[1,n], Y[1,n]

)
≤ C log (en/m)

σmin

√
log(pn/m)

n

×

[
(m+ 1)2

L3

σ2
log3/2(ep) + (m+ 1)3/2

L
1/2
4

σ
log(ep) +

(
(m+ 1)q−1 νq

σ2

)1/(q−2)

log(ep)

]
,

for some universal constant C > 0.

3.1. Comparison with existing literature. In this section, we compare our main results
with existing results in the high-dimensional CLT literature. In Section 3.1.1, we explore the
implication of our results under independence and compare it with the nearly optimal result
presented by CCK20. The key finding is that both results imply the same dimension complex-
ity for sub-Weibull Xj (including sub-Gaussian and sub-exponential cases), while our result
allows for more general conditions such as finite third-order moments and m-dependence.
Additionally, in Section 3.1.2, we demonstrate the significant improvement achieved by our
work in the Berry-Esseen bound under m-dependence, surpassing previous works.
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3.1.1. Under independence. Let’s consider the case where the random variables Xi are
independent. Since independence holds for all pairs of Xi, regardless of the difference be-
tween their indices, we can say that Xi⊥⊥Xj when |i− j| is greater than or equal to 1. Thus,
according to the definition of 1-dependence, independence is a special case of 1-dependence.
As a result, Theorem 3.1 and Theorem 3.2 readily hold for independent Xi. In this subsec-
tion, we compare this implication under independence with the work of CCK20. Specifically,
we compare their Theorems 2.1 and 2.2 with our Theorem 3.2 since all three theorems as-
sume the existence of finite fourth moments. It’s worth noting that under independence, the
assumptions (MIN-EV) and (MIN-VAR) of our result can be expressed as follows:

min
k∈[p]

Var[Y
(k)
[i,j]]≥ σ2min · |[i, j]|,

λmin(Var[Y[i,j]])≥ σ2 ·max{|[i, j]| − 2,0}, ∀i, j.

These assumptions require the covariance matrix of X[i,j] to be strongly non-degenerate
for all pairs (i, j). This assumption is commonly made in high-dimensional CLTs, although
CCK20 employed a weaker version assuming that the covariance matrix of the scaled average
is well-approximated by a strictly positive-semidefinite matrix. A recent work of Fang et al.
(2023) obtained a Berry–Esseen bound of 1/

√
n-rate without the strong non-degeneracy as-

sumption. It would be interesting to explore an extension of their work in our setting. In terms
of moment assumption, our result presents a significant improvement. In CCK20, Theorems
2.1 and 2.2 require finite fourth moments. However, our Theorem 3.1 only assumes finite
third moments, which means it accommodates scenarios where fourth moments may be in-
finite. For example, this scenario can occur in high-dimensional linear regression problems
where Xi = ξiWi for heavy-tailed univariate errors ξi and light-tailed covariates Wi. If ξi’s
have a finite third (conditional on Wi) moment but an infinite fourth moment, then E∥Xi∥4∞
can be infinite; see Chernozhukov et al. (2023, Section 4.1) for an application to penalty
parameter selection in lasso using bootstrap.

We now shift our focus to the convergence rate of the established Berry-Esseen bounds.
Both theorems establish convergence rates of order 1/

√
n with respect to n up to logarithmic

factors when p remains fixed. Therefore, a more meaningful comparison lies in the dimension
complexities imposed by the theorems. As previously discussed, these dimension complexi-
ties are dependent on the tail behavior of Xj . We assume Xj to be i.i.d. and Var[X

(k)
j ] = 1

for all k = 1, . . . , n. Let’s consider the following two scenarios:

1. |X(k)
j | ≤B for all j = 1, . . . , n and k = 1, . . . , p almost surely;

2. ∥X(k)
j ∥ψα

≤B and 1
n

∑n
i=1E[|X

(k)
i |4]≤B2 for all j = 1, . . . , n and k = 1, . . . , p, where

∥·∥ψα
is the Orlicz norm with respect to ψα(x)≡ exp(xα) for α≤ 2.

These scenarios correspond to the first two conditions considered by CCK20, which pre-
sented the respective Berry–Esseen bounds as Corollary 2.1. In the first scenario,

µ(X[1,n], Y[1,n])≤

{
CB√
nσ2 log

3/2(ep) log(en), from Corollary 2.1, CCK20,
CB√
nσ2 log

3/2(ep)
√

log(pn) log (en) , from our Theorem 3.2.

The resulting dimension complexity of CCK20 is log3 p = o(n). They demonstrated that
this complexity is optimal in Remark 2.1. For our result, the bound is derived using the fact
that L3,j ≤ BL2,j = B, L4,j ≤ B2L2,j = B2, and νq,j ≤ Bq for all q ≥ 4. The resulting
dimension complexity of log4 p = o(n). Therefore, our Berry-Esseen bound is suboptimal
when Xj are bounded random vectors. Next, suppose that Xj are sub-Weibull(α) for α≤ 2.
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When α = 2, Xj are sub-Gaussian, where α = 1 means Xj are sub-exponential. In this
scenario,

µ(X[1,n], Y[1,n])

≤


CB√
nσ2

(
log(en) log3/2(ep) + log(3/2+1/α)(ep)

)
, from Corollary 2.1, CCK20,

CB√
nσ2

√
log(pn) log (en)

(
log3/2(ep) + log(3/2+1/α)(ep)

)
, from our Theorem 3.2.

Corollary 2.1 of CCK20 presented the result only for sub-Gaussian Xj , but the proof
readily extends to the other cases with α < 2. This leads to the dimension complexity
of log3+2/α(ep) = o(n). For our result, the bound is derived using the fact that L3,j ≤√
L2,jL4,j ≤ B, L4,j ≤ B2, and νq,j ≤ CBqσqmin log

q/α(ep) for any q ≥ 4 (see Corollary
7.4, Zhang and Chen, 2020). The resulting dimension complexity is the same as CCK20.

3.1.2. Under m-dependence. In this section, we compare Corollary 3.4 to existing CLT
results for m-dependent random variables. First, we revisit Shergin (1980)’s result in uni-
variate case. In Theorem 2 therein, the author showed that if E[|Xi|q] <∞ for q ≥ 3 and
i= 1, . . . , n, then

µ
(
X[1,n], Y[1,n]

)
≤C(q, . . . )

[
(m+ 1)q−1

∑n
i=1E[|Xi|q]

(E[X2
[1,n]])

q/2

]1/(q−2)

, ‘

where C(q, . . . ) is a constant with implicit dependency on q and an additional assump-
tion similar to (MIN-VAR). We note that for univariate Xj , Assumptions (MIN-VAR) and
(MIN-EV) are equivalent. Under the notation of (MIN-VAR), because E[X2

[1,n]]≥ nσ2min =

nσ2 and E[|Xi|q] = Lq,i = νq,i,

µ
(
X[1,n], Y[1,n]

)
≤C(q, . . . )

[
n1−q/2(m+ 1)q−1 Lq

σqmin

]1/(q−2)

≤ C(q, . . . )

σmin
√
n

[
(m+ 1)q−1Lq

σ2

]1/(q−2)

.

(5)

The dependency on m cannot be improved following the results of Berk (1973). We observe
that given p fixed, the upper bound terms in Corollary 3.4 have the equivalent dependencies
on n and m with Eq. (5) up to the logarithmic factor.

In the realm of high-dimensional cases, prior works have established Berry–Esseen bounds
with various rates. For instance, Zhang and Cheng (2018) derived a bound with an im-
plicit presentation of the rate of their Berry–Esseen bound and its dependence on sample
assumptions in their Appendix A.2. More recently, by employing the large-small-block ap-
proach, similar to Romano and Wolf (2000) in univariate cases, Chang, Chen and Wu (2021)
derived a bound of order O(m2/3polyn(log pn)n−1/6) specifically for sub-exponential Xj

sub-exponential random vectors in their Section 2.1.2. Notably, Kojevnikov and Song (2022)
achieved a rate ofO(log(ep)5/4n−1/4) without assuming independence, but their result relied
on stronger assumptions such as Xj being a martingale difference sequence, more restrictive
than m-dependence.

Our contribution, presented in Corollary 3.4, significantly advances the literature by pro-
viding a state-of-the-art rate of O(m2polyn(log(pn))n−1/2). This result is achieved under
minimal assumptions over the high-dimensional CLT literature, making it a valuable addi-
tion to the field.
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4. Discussion. We derived a 1/
√
n scaling of Berry–Esseen bound for high-dimensional

m-dependent random vectors over hyper-rectangles. This result only required finite third
moments of the random vectors, among others like sub-Gaussian or sub-exponential condi-
tions. If p were fixed, the rate implied by our result is (m+ 1)2(logn/m)3/2/

√
n. This rate

matches that of Shergin (1980) on 1-dimensional m-dependent random variables, and this
dependency on m cannot be improved. Our result supports the high-dimensional CLT over
hyper-rectangles under m-dependency between samples.

Our advancement in the Gaussian approximation rate of m-dependent samples could ben-
efit the theoretical analyses under physical dependence frameworks. Zhang and Cheng (2018)
introduced the m-approximation technique to study the Gaussian approximation of weakly
dependent time series under physical dependence. The technique extends the Berry–Esseen
bounds form-dependent samples to weaker temporal dependencies (see Theorem 2.1 and the
end of Section 2.2 therein). Similarly, Chang, Chen and Wu (2021) extended the n−1/6 rate
under m-dependence to samples with physical dependence. The resulting rate in Theorem 3
was better than the best rate of Zhang and Wu (2017).

Another important future direction is extending our technique to samples with generalized
graph dependency. Random vectors X1,X2, . . . ,Xn ∈Rp are said to have dependency struc-
ture defined by graph G = ([n],E) if Xi⊥⊥Xj if (i, j) ∈ E. Graph dependency generalizes
m-dependence as a special case by taking E = {(i, j) : |i− j| ≤m}. The only CLT result
up to our best knowledge has been Chen and Shao (2004) for 1-dimensional samples with
graph dependency. Extending their result to high-dimensional samples has a huge potential
to advance statistical analyses on network data, which is another data type with increasing
availability.

5. Proof techniques and sketch. The proofs of Theorems 3.1 and 3.2 involve intri-
cate layers of advanced techniques, making them challenging to comprehend at a glance. To
aid readers’ understanding, we initially establish the simplest version of the proof, focusing
on 3 ≤ q and 1-dependence, instead of 1-ring dependence. In this particular case, we have
X1⊥⊥Xn. This results in a similar Berry-Esseen bound with Theorem 3.1, but with

L3,max ≡ max
i∈[1,n]

L3,i and νq,max ≡ max
i∈[1,n]

νq,i

in place of L3 and νq , respectively. In the proof, we use the inductive relationship between
anti-concentration probabilities and Kolmogorov-Smirnov statistics. Anti-concentration
refers to the probability of a random variable to be contained in a small subset (typically
an annulus). An anti-concentration probability bound commonly used in the CLT literature,
as well as in this work, is of Gaussian random vector. Nazarov (2003) and Chernozhukov,
Chetverikov and Kato (2017b) showed an upper bound for the probability that a Gaussian
random vector is contained in Ar,δ ≡ {x ∈ Rp : x ⪯ r + δ1} \ {x ∈ Rp : x ⪯ r − δ1} for
r ∈Rp and δ ∈ [0,∞).

LEMMA 5.1 (Gaussian anti-concentration inequality; Nazarov, 2003; Chernozhukov,
Chetverikov and Kato, 2017b). For a random vector Y ∼ N(0,Σ) in Rp, r ∈ Rp, and
δ ∈ [0,∞),

P[Y ∈Ar,δ]≤Cδ

√
log(ep)

mini=1,...,pΣii

for an absolute constant C > 0.
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The anti-concentration probability of our interest is of X[1,i] conditional on the other Xj .
We denote the supremum of the probability over r by

κ[1,i](δ)≡ sup
r∈Rp

P[X[1,i] ∈Ar,δ|X(i,n]].

We also denote the Kolmogorov-Smirnov statistics of our interest by

µ[1,i] ≡ µ(X[1,i], Y[1,i]).

We start the proof by deriving the inductive relationship from κ[1,i](δ) to µ[1,i]: for i≤ n and
δ > σmin,

√
iµ[1,i] ≤C(νq, σmin, σ)δ log(ep) +C(νq, σ)

log(en)(log(ep))3/2

δ
sup
j:j<i

√
jκ[1,j] (δ) . (6)

To derive this, we use the Lindeberg swapping technique, similar to that used in Kuchib-
hotla and Rinaldo (2020). However, their standard approach is restricted by the presence of
dependency among the random variables Xj . Our key contribution in this aspect lies in ad-
dressing the added complexity due to the dependence structure. For the details, please refer
to Section 5.1.

In light of Eq. (6), our objective is to provide an upper bound for the anti-concentration
probabilities κ[1,j](δ). When the random variables Xj are independent, κ[1,i](δ) represents
the marginal anti-concentration probability since the condition on X(i,n] in the definition of
κ[1,i](δ) can be omitted. Consequently, a straightforward upper bound for κ[1,i](δ) arises from
Lemma 5.1: for i≤ n,

κ[1,i](δ)≤ µ[1,i] +Cδ

√
log(ep)

σminn
. (7)

Kuchibhotla and Rinaldo (2020) implicitly employed a dual induction approach using
Eqs. (6) and (7) to establish the Berry-Esseen bound with the desired rate over n, i.e., 1/

√
n

up to the logsarithm. However, Eq. (7) falls short when dealing with 1-dependence, as X[1,i]

becomes dependent on X(i,n] within the definition of κ[1,i](δ). In the case of univariate de-
pendent Xj , Chen and Shao (2004) derived a non-inductive upper bound for the conditional
anti-concentration probability using a telescoping method (refer to Proposition 3.2 therein).
Nevertheless, extending this method to high-dimensional cases presents a non-trivial chal-
lenge. In our work, we adopt a similar intuition, but instead of aiming for a non-inductive
bound, we establish an inductive relationship from µ[1,i] to κ[1,i](δ): for i < n and δ > σmin,

√
iκ[1,i](δ)≤C

(
δ+ ν1
σmin

√
log(ep) + max

j:j≤i−2

√
jµ[1,j]

)
. (8)

This main contribution is summarized as Lemma 5.5 in Section 5.2. Finally, we conduct a
dual induction using Eqs. (6) and (8) and conclude the proof.

The proofs of Theorems 3.1 and 3.2 share similar steps but incorporate additional tech-
niques. The explanation of these techniques is provided in the last two subsections. In Sec-
tion 5.4, we present the iterated Lindeberg swapping method, which helps improve the di-
mension complexity when a finite fourth moment condition is satisfied. Additionally, in Sec-
tion 5.6, we introduce permutation arguments to enhance the Berry-Esseen bounds by replac-
ing the maximal moments with the average moments. For the complete proofs, please refer
to Appendices A.3 and A.4.
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5.1. Induction from κ to µ for 3≤ q. Here we prove the inductive relationship for µ[1,n],
but the same proof applies to µ[1,i] with any i smaller than n. The quantity we want to control
concerns expectations of indicator functions, which are not smooth. For this reason, most
proofs of CLTs apply a smoothing to replace indicator functions by smooth functions. We use
the mixed smoothing proposed by Chernozhukov, Chetverikov and Koike (2020): namely, for
r ∈Rp and δ,ϕ > 0,

ρεr,ϕ(x)≡ E[fr,ϕ(x+ εZ)],

where

fr,ϕ(x)≡


1, if max{x(i) − r(i) : i ∈ [d]}< 0,

1− ϕmax{x(i) − r(i) : i ∈ [d]}, if 0≤max{x(i) − r(i) : i ∈ [d]}< 1/ϕ,

0, if 1/ϕ≤max{x(i) − r(i) : i ∈ [d]}.

This smoothing comes at the cost of smoothing bias terms, according to Lemma 1 of Kuchib-
hotla and Rinaldo (2020) and Lemma 2.1 of Chernozhukov, Chetverikov and Koike (2020).
Here we summarize the two results into the following lemma.

LEMMA 5.2. Suppose that X is a p-dimensional random vector, and Y ∼N(0,Σ) is a
p-dimensional Gaussian random vector. Then, for any δ > 0,

µ(X,Y )≤C
δ log(ep) +

√
log(ep)/ϕ√

mini=1,...,pΣii
+C sup

r∈Rd

∣∣∣E[ρδr,ϕ(X)]−E[ρδr,ϕ(Y )]
∣∣∣.

Because mini=1,...,pΣii ≥ nσ2min, Lemma 5.2 implies

µ[1,n] ≤
C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin
+C sup

r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣.

Lindeberg swapping. The standard Lindeberg swapping approach upper bounds

sup
r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

by decomposing it into

sup
r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

= sup
r∈Rp

∣∣∣∣∣∣
n∑
j=1

E
[
ρδr,ϕ(W

C
[j,j] +Xj)− ρδr,ϕ(W

C
[j,j] + Yj)

]∣∣∣∣∣∣,
(9)

where WC
[i,j] ≡X[1,i) + Y(j,n], and further bounding the each term by third-order remainder

terms after Taylor expansions up to order 3 and the second moment matching between Xj

and Yj . In the subsequent discussion, we will use the notation W as a wildcard, representing
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either X or Y depending on the context.

E[φεr(WC
[j,j] +Xj)]

= E[φεr(WC
[j,j])] +E

[〈
∇φεr(WC

[j,j]),Xj

〉]
+E

[
1

2

〈
∇2φεr(W

C
[j,j]),X

⊗2
j

〉]
+E

[
1

2

∫ 1

0
(1− t)2

〈
∇3φεr(W

C
[j,j] + tXj),X

⊗3
j

〉
dt

]
= E[φεr(WC

[j,j])] +
1

2

〈
E[∇2φεr(W

C
[j,j])],E[X

⊗2
j ]
〉

+
1

2

∫ 1

0
(1− t)2E

[〈
∇3φεr(W

C
[j,j] + tXj),X

⊗3
j

〉]
dt,

(10)

so by E[X⊗2
j ] = E[Y ⊗2

j ],

E[φεr(WC
[j,j] +Xj)]−E[φεr(WC

[j,j] + Yj)]

=
1

2

∫ 1

0
(1− t)2E

[〈
∇3φεr(W

C
[j,j] + tXj),X

⊗3
j

〉]
dt

− 1

2

∫ 1

0
(1− t)2E

[〈
∇3φεr(W

C
[j,j] + tXj), Y

⊗3
j

〉]
dt.

However, in the case of 1-dependence, the second equality of Eq. (10) no longer holds due
to the dependency between WC

[j,j] and Xj . To address this issue, we introduce Taylor expan-
sions on ∇φεr(WC

[j,j]) and ∇2φεr(W
C
[j,j]) to break the dependency before proceeding with the

second-order moment matching. This additional step involves meticulous calculations and
lengthy specification of remainder terms. We provide the full details in Appendix C.2. As a
result,

n∑
j=1

E
[
ρδr,ϕ(W

C
[j,j] +Xj)− ρδr,ϕ(W

C
[j,j] + Yj)

]
=

n∑
j=1

E
[
R

(3,1)
Xj

−R
(3,1)
Yj

]
, (11)

where R
(3,1)
Xj

and R
(3,1)
Yj

are remainder terms of the Taylor expansions specified in Ap-
pendix C.2.

Remainder lemma. Then, we upper bound the remainder terms using the upper bounds for
the differentials of ρεr,ϕ. In particular, CCK20 showed in Lemmas 6.1 and 6.2 that

sup
w∈Rp

∑
i1,...,iα

sup
∥z∥∞≤ 2δ√

log(ep)

∣∣∣∇(i1,...,iα)ρδr,ϕ(w+ z)
∣∣∣≤C

ϕγ(log(ep))(α−γ)/2

δα−γ

for any γ ∈ [0,1]. For the event that WC
[j,j] is in the anulus Ar,δ′ for some δ′ we will spec-

ify shortly, we use the above inequality to bound the remainder term. Out of the event, the
differential is sufficiently small. Hence, the upper bounds involves with the conditional anti-
concentration probability P[WC

[j,j] ∈Ar,δ′ |X[1,j)], resulting into the following lemma.

LEMMA 5.3. Suppose that Assumption (MIN-EV) holds. For W representing either X
or Y and j ∈ [1, n],∣∣∣E[R(3,1)

Wj

]∣∣∣≤C
(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
min{1, κ[1,j−1)(δ

o
n−j) + κoj},
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where δ2n−j = δ2 + σ2max{n− j,0}, δon−j = 12δn−j
√

log(pn) and κoj =
δn−j log(ep)

σmin

√
max{j,1}

, as

long as δ ≥ σmin and ϕδ ≥ 1
log(ep) .

Putting all the results back to µ[1,n], we get

µ[1,n] ≤
C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin
+C

n∑
j=1

∣∣∣E[R(3,1)
Xj

−R
(3,1)
Yj

]∣∣∣
≤ C√

n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin

+C

n∑
j=1

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
min{1, κ[1,j−1)(δ

o
n−j) + κoj}.

Partitioning the sum. Let Jn ≡ n(1− σ2
min

σ2 log2(4ep)
). We note that by Assumption (VAR-EV),

Jn ≥ n
2 . The choice of Jn stems from comparing 1 and κ[1,j)(δon−j) + κoj . In detail, note that

κ[1,j)(δ
o
n−j) + κoj ≥ 1

if κoj =
δn−j log(ep)

σmin

√
max{j,1}

=

√
δ2+σ2 max{n−j,0} log(ep)

σmin

√
max{j,1}

≥ 1.

For j < Jn,∑
j<Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
min{1, κ[1,j−1)(δ

o
n−j) + κoj}

≤
∑
j<Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
≤ C√

n

(log(ep))5/2

σ2σmin

[
L3,max + ϕq−3νq,max

]
,

because
⌊Jn⌋∑
j=1

1

δ3n−j
≤
∫ n

n−⌊Jn⌋

1

(δ2 + tσ2)3/2
dt≤− 2

σ2δn
+

2

σ2δn−⌊Jn⌋
≤ C

σ3
√
n− Jn

≤ C log(ep)

σ2σmin
√
n
.

(12)

For j ≥ Jn,∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
min{1, κ[1,j−1)(δ

o
n−j) + κoj}

≤
∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−1)(δ

o
n−j)

+
∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κoj .
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The last term is upper bounded by∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κoj

≤ C√
n

(log(ep))5/2

σ2σmin
log

(
1 +

√
nσ

δ

)[
L3,max + ϕq−3νq,max

]
.

because
n∑

j=⌈Jn⌉

κoj
δ3n−j

=

n∑
j=⌈Jn⌉

log(ep)

δ2n−jσmin
√
j
≤ C log(ep)

σ2σmin
√
n
log

(
1 +

√
nσ

δ

)
. (13)

In sum, we obtain the following lemma about the relationship between µ[1,n] ≡ µ(X[1,n], Y[1,n])
and the conditional anti-concentration probability κ[1,i](δ)≡ supr∈Rp P[X[1,i] ∈Ar,δ|X(i,n]].

LEMMA 5.4. If Assumptions (MIN-VAR), (MIN-EV) and (VAR-EV) hold, and q ≥ 3,
then for any δ ≥ σmin,

µ[1,n] ≤
C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin

+
C√
n

(log(ep))5/2

σ2σmin
log

(
1 +

√
nσ

δ

)[
L3,max + ϕq−3νq,max

]
+C

∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−3)(δ

o
n−j),

for some absolute constant C > 0.

5.2. Induction from µ to κ. Having obtained the induction from κ to µ in the previ-
ous subsection, we now proceed to obtain an induction from µ to κ. This is the step that
was implicitly used in the proofs of high-dimensional CLTs for independent observations
(e.g., Kuchibhotla and Rinaldo, 2020). However, as mentioned in Section 5, the dependence
between X[1,i] and X(i,n] in κ[1,i](δ) ≡ supr∈Rp P[X[1,i] ∈ Ar,δ|X(i,n]] makes the step non-
trivial. We make a breakthrough using a similar appraoch described in Section 5.1, where we
used the Taylor expansion to eliminate the dependency. However, once again, the conditional
anti-concentration probability involves a conditional expectation of an indicator function,
which lacks smoothness. So we first apply a smoothing technique to the indicator function
and leverage the Taylor expansion on the smoothed indicator, subsequently bounding the
resulting remainder terms.

Smoothing. For the conditional anti-concentration probability, we use a standard smoothing,
rather than the mixed smoothing we used in Section 5.1. For r ∈Rp and δ ∈ [0,∞), let

φεr,δ(x) = E[I{x+ εZ ∈Ar,δ}],
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where Z is the p-dimensional standard Gaussian random vector. For some h > 0,

φεr,δ(x)− I{x ∈Ar,δ}=
∫

(I{x+ εz ∈Ar,δ} − I{x ∈Ar,δ})ϕ(z)dz

=

∫
∥z∥∞≤10

√
log(ph)

(I{x+ εz ∈Ar,δ} − I{x ∈Ar,δ})ϕ(z)dz

+

∫
∥z∥∞>10

√
log(ph)

(I{x+ εz ∈Ar,δ} − I{x ∈Ar,δ})ϕ(z)dz

≥−I{∥x− ∂Ar,δ∥∞ ≤ 10ε
√

log(ph)}I{x ∈Ar,δ}

− P[∥Z∥∞ > 10
√

log(ph)],

where ∂Ar,δ is the boundary ofAr,δ ,Z is the p-dimensional standard Gaussian random vector
and ϕ(z) is the density function of Z . Hence,

φεr,δ(x)≥ I{x ∈Ar,δ} − I{∥x− ∂Ar,δ∥∞ ≤ 10ε
√

log(ph)}I{x ∈Ar,δ}

− P[∥Z∥∞ > 10
√

log(ph)]

= I{x ∈Ar,δ−εo} −
1

h4
,

(14)

where εo = 10ε
√

log(ph). On the other hand,

φεr,δ(x)≤ I{x ∈Ar,δ}+ I{∥x− ∂Ar,δ∥∞ ≤ 10ε
√

log(ph)}I{x /∈Ar,δ}

+ P[∥Z∥∞ > 10
√

log(ph)]

= I{x ∈Ar,δ+εo}+
1

h4
.

(15)

As a result, for any h > 0,

P[X[1,i] ∈Ar,δ|X(i,n]]

≤ E[φεr,δ+εo(X[1,i])|X(i,n]] +
1

h4
.

(16)

Taylor expansion. Applying the Taylor expansion to E[φεr,δ+εo(X[1,i])|X(i,n]],

E[φεr,δ+εo(X[1,i])|X(i,n]]

≤ E
[
φεr,δ+εo(X[1,i] −X{2,i−1})|X(i,n]

]
+E

[
RX{2,i−1},1|X(i,n]

]
where

RX{2,i−1},1 =

∫ 1

0

〈
∇φεr,δ+εo(X[1,i] − tX{2,i−1}),X{2,i−1}

〉
dt

First, using Eq. (15),

E[φεr,δ+εo(X[1,i] −X{2,i−1})|X(i,n]]

≤ E[I{X[1,i] −X{2,i−1} ∈Ar,δ+2εo}+
1

h4
|X(i,n]]

≤ E[P[X[3,i−2] ∈Ar1,δ+2εo |X(i−1,n]∪{1}]|X(i,n]] +
1

h4
,
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where r1 = r−X1−Xi is a Borel measurable function with respect to X(i−1,n]∪{1}. Because
X[3,i−2]⊥⊥X(i−1,n]∪{1},

P[X[3,i−2] ∈Ar1,δ+2εo |X(i−1,n]∪{1}]

≤ P[Y[3,i−2] ∈Ar1,δ+2εo ] + 2µ(X[3,i−2], Y[3,i−2])

≤C
δ+ 20ε

√
log(ph)

σmin

√
log(ep)

i0 − 2
+ 2µ[3,i−2],

(17)

almost surely due to the Gaussian anti-concentration inequality (Lemma 5.1).

Bounding the remainder. Bounding the remainder term proceeds similarly with the proof
of the remainder lemma (Lemma 5.3), resulting into an upper bound with an conditional
anti-concentration probability bound (κ(2,i−1)(ϵ

o) in the following lemma). We relegate the
bounding details to Appendix B.4.

LEMMA 5.5. Suppose that Assumptions (MIN-VAR) and (MIN-EV) hold. For any i ∈
[3, n) and δ > 0,

κ[1,i](δ)

≤C

(√
log(ep)

ε
(ν1,2 + ν1,i−1) κ(2,i−1)(ε

o) + µ(2,i−1)

)

+min

{
1,C

δ+ 2εo

σmin

√
log(ep)

i− 2

}
+

C

σmin
(ν1,2 + ν1,i−1)

√
log(ep)

i− 2
,

where εo ≡ 20ε
√

log(p(io − 2)), as long as ε≥ σmin.

This resembles the relationship within κ described in Eq. (3.16) of Chen and Shao (2004).
In their work on univariate observations, however, the κ in the righthand side was κ[1,i](ϵo)
instead of with the reduced index set (2, i − 1). Hence, they could plug-in δ = ϵo and up-
per bound κ(2,i−1)(ϵ

o) for some suitable ϵ, which we refered to ’a telescoping method’ in
Section 5. This resulted into a non-inductive upper bound for κ[1,i](δ) (see Eqs. (3.17) and
(3.18) therein). In our setting, the reduced index set (2, i−1) makes the technique ineffective.
Alternatively, we proceed to the dual induction levering on the reduced index set.

5.3. Dual Induction. Let our induction hypothesis on n be
√
nµ[1,n] ≤ µ̃1,nL3,max + µ̃2,nν

1/(q−2)
q,max , (HYP-BE-1)

where

µ̃1,n = C1
(log(ep))3/2

√
log(pn)

σ2σmin
log (en) ,

µ̃2,n = C2
log(ep)

√
log(pn)

σ2/(q−2)σmin
log (en)

for universal constants C1 and C2 whose values do not change in this subsection. If C1,C2 ≥
1, then (HYP-BE-1), requiring µ[1,n] ≤ 1 only, trivially holds for n≤ 4.
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Now we consider the case of n > 4. Suppose that the induction hypotheses hold for all
intervals with lengths smaller than n. We first derive an anti-concentration inequality for any
such intervals. Without loss of generality, we only consider the intervals [1, i] with i < n. We
claim that

√
iκ[1,i](δ)≤ κ̃1,iL3,max + κ̃2,iν

1/(q−2)
q,max + κ̃3,iν

1/2
2,max + κ̃4δ, (HYP-AC-1)

where κ̃1,i = C1,κµ̃1,i, κ̃2,i = C2,κµ̃2,i, κ̃3,i = C3,κ
log(ep)

√
log(pi)

σmin
and κ̃4 = C4,κ

√
log(ep)

σmin
for

some universal constants C1,κ, C2,κ, C3,κ and C4,κ whose values do not change in this sub-
section. If C1,κ,C2,κ,C3,κ,C4,κ ≥ 1, then (HYP-BE-1), requiring κ[1,n](δ) ≤ 1 for all δ > 0
only, trivially holds for i≤ 16. For i > 16, assume that Eq. (HYP-AC-1) holds for all smaller
i’s. By Lemma 5.5, for any ε≥ σmin and δ > 0,

κ[1,i](δ)

≤C

√
log(ep)

ε
ν1,maxmin{1, κ(1,i)(εo)}

+Cµ(1,i) +C
δ+ 2εo

σmin

√
log(ep)

i− 2
+C

ν1,max

σmin

log(ep)√
i− 2

,

where εo = 20ε
√

log(p(i− 2)) and C > 0 is an absolute constant. Due to (HYP-AC-1) and
(HYP-BE-1) on interval (1, i)⊊ [1, i],

κ[1,i](δ)

≤ C√
i− 2

√
log(ep)

ε
ν1,max

[
κ̃1,i−2L3,max + κ̃2,i−2ν

1/(q−2)
q,max + κ̃3,i−2ν

1/2
2,max + κ̃4δ

]
+

C√
i− 2

µ̃1,i−2L3,max +
C√
i− 2

µ̃2,i−2ν
1/(q−2)
q,max

+C
δ+ 2εo

σmin

√
log(ep)

i− 2
+C

ν1,max

σmin

log(ep)√
i− 2

.

As a result, we obtain a recursive inequality on κ̃’s that
√
iκ[1,i](δ)

≤ C′
√

log(ep)

ε
ν1,max

[
κ̃1,i−2L3,max + κ̃2,i−2ν

1/(q−2)
q,max + κ̃3,i−2ν

1/2
2,max + κ̃4δ

]
+ C′

[
µ̃1,i−2L3,max + µ̃2,i−2ν

1/(q−2)
q,max +

δ+ 2εo

σmin

√
log(ep) +

ν1,max

σmin
log(ep)

]
,

(18)

for some universal constant C′, whose value does not change in this subsection. Plugging in
ε= 2C′√log(ep)ν

1/2
2,max ≥ 2C′√log(ep)ν1,max ≥ σmin,

√
iκ[1,i](δ)

≤ 1

2

[
κ̃1,i−2L3,max + κ̃3,i−2ν

1/(q−2)
q,max + κ̃3,i−2ν1,max + κ̃4δ

]
+ C′

[
µ̃1,i−2L3,max + µ̃2,i−2ν

1/(q−2)
q,max

]
+ C′ log(ep)

σmin
ν1,max + 40C′ log(ep)

√
log(p(i− 2))

σmin
ν
1/2
2,max + C′

√
log(ep)

σmin
δ

≤ κ̃1,iL3,max + κ̃2,iν
1/(q−2)
q,max + κ̃3,iν

1/2
2,max + κ̃4δ,
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where C1,κ = C2,κ = C4,κ =max{2C′,1} and C3,κ =max{82C′,1}.

Now we prove (HYP-BE-1) on n. We first upper bound the last term in Lemma 5.4:

C
∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−1)(δ

o
n−j).

Applying (HYP-AC-1) to κ[1,j−1)(δ
o
n−j) in T2,1,

C
∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−1)(δ

o
n−j)

≤C
∑
j≥Jn

(log(ep))3/2

δ3n−j
√

max{j − 2,1}
[
L3,max + ϕq−3νq,max

]
×
[
κ̃1,j−2L3,max +κ̃2,j−2ν

1/(q−2)
q,max + κ̃3,j−2ν

1/2
2,max + κ̃4δ

o
n−j

]
We recall that κ̃1,n−1 = C1,κµ̃1,n−1, κ̃2,n−1 = C2,κµ̃2,n−1, κ̃3,n−1 = C3,κ

log(ep)
√

log(p(n−1))

σmin

and κ̃4 = C4,κ

√
log(ep)

σmin
. Based on Eq. (15) in Kuchibhotla and Rinaldo (2020), saying

n∑
j=⌈Jn⌉

1

δ2n−j
≤ C

σ2
log

(
1 +

√
nσ

δ

)
,

n∑
j=⌈Jn⌉

1

δ3n−j
≤ 2

δσ2
,

(19)

we obtain

C
∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−1)(δ

o
n−j)

≤ C√
n

(log(ep))3/2

σ2
[
L3,max + ϕq−3νq,max

]

×


(µ̃1,n−1L3,max + µ̃2,n−1ν

1/(q−2)
q,max )

1

δ
+

log(ep)
√

log(pn)

σmin

ν
1/2
2,max

δ

+

√
log(ep) log(pn)

σmin
log

(
1 +

√
nσ

δ

)
 .
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In sum, as long as δ ≥ ν
1/2
2,max

√
log(ep)≥ σmin and ϕ > 0, we have the recursive inequality

on µ̃’s that
√
nµ[1,n]

≤ C′′ (log(ep))
3/2

σ2δ

[
L3,max + ϕq−3νq,max

] [
µ̃1,n−1L3,max + µ̃2,n−1ν

1/(q−2)
q,max

]
+ C′′

[
δ log(ep)

σmin
+

√
log(ep)

ϕσmin

]

+ C′′ (log(ep))
5/2

σ2σmin
log

(
1 +

√
nσ

δ

)[
L3,max + ϕq−3νq,max

]
+ C′′ (log(ep))

3/2

σ2
log

(
1 +

√
nσ

δ

)[
L3,max + ϕq−3νq,max

] √log(ep) log(pn)

σmin
,

where C′′ is a universal constant whose value does not change in this subsection. Tak-

ing δ = max{4C′′,1}√
log(ep)

(
L3,max

σ2 (log(ep))2 +
(
νq,max

σ2 (log(ep))2
) 1

q−2

)
≥ ν

1/2
2

√
log(ep) and ϕ =

1

δ
√

log(ep)
,

√
nµ[1,n]

≤ 1

2
max
j<n

µ̃1,jL3,max +
1

2
max
j<n

µ̃2,jν
1/(q−2)
q,max

+ C(3)

(
L3,max

(log(ep))2

σ2
+ ν1/(q−2)

q,max

(log(ep))2/(q−2)

σ2/(q−2)

)√
log(pn)

σmin
log (en)

for another universal constant C(3), whose value only depends on C′′. Taking C1 = C2 =
max{2C(3),1},

µ̃1,n = C1
(log(ep))2

√
log(pn)

σ2σmin
log (en) ,

µ̃2,n = C2
(log(ep))2/(q−2)

√
log(pn)

σ2/(q−2)σmin
log (en)

satisfies
√
nµ[1,n] ≤ µ̃1,nL3,max + µ̃2,nν

1/(q−2)
q,max ,

which proves (HYP-BE-1) at n. This proves our theorem.

5.4. For 4≤ q. In cases with finite fourth moment, we can obtain a better sample com-
plexity by decomposing the third order remainder R(3,1)

Wj
. Based on the Taylor expansions up
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to order 4,
n∑
j=1

E
[
R

(3,1)
Xj

−R
(3,1)
Yj

]

=
1

6

n∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n])

]
,E[X⊗3

j ]
〉

+
1

2

n−1∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+2,n])

]
,E[Xj ⊗Xj+1 ⊗ (Xj +Xj+1)]

〉

+

n−2∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+3,n])

]
,E [Xj ⊗Xj+1 ⊗Xj+2]

〉
+

n∑
j=1

E
[
R

(4,1)
Xj

−R
(4,1)
Yj

]
,

(20)

where R
(4,1)
Xj

and R
(4,1)
Yj

are remainder terms of the Taylor expansions specified in Ap-
pendix C.2. We re-apply the Lindeberg swapping. For brevity, we only look at the first term,
but similar arguments apply to the other third order moment terms. We observe that〈

E[∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))],E[X⊗3
j ]
〉

=
〈
E
[
∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉

+
〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))−∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉
.

(21)

For the first term, because Y[1,j−1) + Y(j+1,n) is Gaussian, Lemma 6.2 in Chernozhukov,
Chetverikov and Koike (2020) and Assumption (VAR-EV) imply that∣∣∣〈E [∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉∣∣∣≤ C

n3/2
L3,j

(log(ep))3/2

σ3

≤ C

n3/2
L3,j

(log(ep))2

σ2σmin
.

(22)

For the second term, we re-apply the Lindeberg swapping: for j = 3, . . . , n− 1,〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))

]
−E

[
∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉
.

=

j−2∑
k=1

〈
E
[
∇3ρεr,ϕ(X[1,k) +Xk + Y(k,j−1)∪(j+1,n))

]
−E
[
∇3ρεr,ϕ(X[1,k) + Yk + Y(k,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉
.

(23)

By the Taylor expansion cnetered at X[1,k)+Y(k,j−1)∪(j+1,n], the difference can be rewritten
as a sum of sixth order remainder terms:

n∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))−∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉

=

n∑
j=3

j−2∑
k=1

E
[
R

(6,1)
Xj ,Xk

−R
(6,1)
Xj ,Yk

]
,

(24)
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where R
(6,1)
Xj ,Wk

is the sixth order remainder terms. The detail of the expansion and specifica-
tion of the remainder term are given in Appendix C.4. Hence,

n∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n])

]
,E[X⊗3

j ]
〉

≤ C√
n
L3,max

(log(ep))2

σ2σmin
+

n∑
j=3

j−2∑
k=1

E
[
R

(6,1)
Xj ,Xk

−R
(6,1)
Xj ,Yk

]
.

Similarly,

n−1∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+2,n])

]
,E[Xj ⊗Xj+1 ⊗ (Xj +Xj+1)]

〉

≤ C√
n
L3,max

(log(ep))2

σ2σmin
+

n−1∑
j=3

j−2∑
k=1

E
[
R

(6,2)
Xj ,Xk

−R
(6,2)
Xj ,Yk

]
, and

n−2∑
j=1

〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+3,n])

]
,E [Xj ⊗Xj+1 ⊗Xj+2]

〉

≤ C√
n
L3,max

(log(ep))2

σ2σmin
+

n−2∑
j=3

j−2∑
k=1

E
[
R

(6,3)
Xj ,Xk

−R
(6,3)
Xj ,Yk

]
,

where R
(6,2)
Xj ,Wk

and R
(6,3)
Xj ,Wk

are similarly derived sixth-order remainder terms. Putting all
above terms together, we get

µ[1,n] ≤
C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin
+

C√
n
L3,max

(log(ep))2

σ2σmin

+

n∑
j=1

∣∣∣E[R(4,1)
Xj

−R
(4,1)
Yj

]∣∣∣+ n∑
j=3

j−2∑
k=1

∣∣∣E[R(6)
Xj ,Xk

−R
(6)
Xj ,Yk

]∣∣∣,
where R

(6)
Xj ,Wk

= 1
6R

(6,1)
Xj ,Wk

+ 1
2R

(6,2)
Xj ,Wk

+ R
(6,3)
Xj ,Wk

. A similar remainder lemma with

Lemma 5.3 can be given for R
(4,1)
Wj

and R
(6)
Xj ,Wk

(see Lemma A.1), and summing up the
upperbounds iteratively over k and j results in a finite fourth moment version of Lemma 5.4
(see Lemma A.2). Finally, the dual induction of this lemma with Lemma 5.5 proves the
desired Berry–Esseen bound with finite fourth moments. The proof details are relegated to
Appendix A.1.

REMARK 5.6. As we discussed in Section 3.1.1, the bottleneck of our Berry–Esseen
bound is often the first term with the third moment (i.e., L3). A significant improve-
ment by the iterated Lindeberg swapping is reducing the term’s order of log(ep) from√

log(pn) log2(ep) to
√

log(pn) log3/2(ep). One may repeat the Lindeberg swapping to fur-
ther improve the order. For example, the first term of R(6)

Xj ,Wk
is

1

2

∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k) + tWk + Y(k,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
dt.
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Based on the Taylor expansion up to order 7,

1

2

∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k) + tWk + Y(k,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
dt

=
1

6

〈
∇6ρεr,ϕ(X[1,k) + Y(k,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
+

1

6

∫ 1

0
(1− t)3

〈
∇7ρεr,ϕ(X[1,k) + tWk + Y(k,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗4

k

〉
dt

=
1

6

〈
∇6ρεr,ϕ(X[1,k−1) + Y(k+1,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
+

1

6

∫ 1

0

〈
∇7ρεr,ϕ(X[1,k−1) + t(Xk−1 + Yk+1) + Y(k+1,j−1)∪(j+1,n)),

X⊗3
j ⊗W⊗3

k ⊗ (Xk−1 + Yk+1)
〉
dt

+
1

6

∫ 1

0
(1− t)3

〈
∇7ρεr,ϕ(X[1,k) + tWk + Y(k,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗4

k

〉
dt.

Like Eq. (21), one may decompose the first term and re-apply the Lindeberg swapping:

1

6

〈
∇6ρεr,ϕ(X[1,k−1) + Y(k+1,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
=

1

6

〈
∇6ρεr,ϕ(Y[1,k−1) + Y(k+1,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
+

k−2∑
l=1

1

6

〈
∇6ρεr,ϕ(X[1,l) +Xl + Y(l,k−1) + Y(k+1,j−1)∪(j+1,n))

−∇6ρεr,ϕ(X[1,l) + Yl + Y(l,k−1) + Y(k+1,j−1)∪(j+1,n)),X
⊗3
j ⊗W⊗3

k

〉
.

To make a successful improvement, we recommend using piece-wise quadratic fr,ϕ, in-
stead of the piece-wise linear one defined in Section 5.1. This choice of fr,ϕ allows im-
proved remainder lemmas for the sixth, seventh and ninth-order remainder terms. At the
end, infinitely repeating the Lindeberg swapping may improve the order asymptotically to√

log(pn) log(ep).
In this paper, we do not pursue further refining Theorem 3.2. Because Yj is Gaussian,

the dimension complexity cannot be improved from log4(ep) due to the last term with the
q-th moment (i.e., νq). Hence, further Lindeberg swappings do not help match the dimension
complexity of CCK20 under bounded Xj .

5.5. Without Assumption (VAR-EV). Assumption (VAR-EV) was invoked at specific
points in the proofs for the simplified versions. We made use of this assumption in two key
instances: first, in our selection of Jn during the "Partitioning the sum" step in Section 5.1,
and second, in obtaining the upper bound in Eq. (22).

For the first case, without (VAR-EV), let Jn ≡ n
(
1−min

{
1
2 ,

σ2
min

σ2 log2(4ep)

})
, which gau-

rantees Jn ≥ n
2 naturally. Then, the rightmost upper bound in Eq. (12) is C

σ3
√
n

rather than
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C log(ep)
σ2σmin

√
n

. Summing the replaced upper bound over j, we obtain

n∑
j=1

∣∣∣E[R(3,1)
Xj

−R
(3,1)
Yj

]∣∣∣
≤ C√

n

(log(ep))5/2

σ2min{σmin, σ
√

log(ep)}
log

(
1 +

√
nσ

δ

)[
L3,max + ϕq−3νq,max

]
+C

∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−3)(δ

o
n−j)

The resulting induction lemma from κ to µ is (that is, Lemma 5.4 becomes)

µ[1,n] ≤
C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin

+
C√
n

(log(ep))5/2

σ2min{σmin, σ
√

log(ep)}
log

(
1 +

√
nσ

δ

)[
L3,max + ϕq−3νq,max

]
+C

∑
j≥Jn

(log(ep))3/2

δ3n−j

[
L3,max + ϕq−3νq,max

]
κ[1,j−3)(δ

o
n−j),

and the same dual induction dervies the desired conclusion.
For Eq. (22), without (VAR-EV), the rightmost upper bound is C

n3/2L3,j
(log(ep))3/2

σ3 rather

than C
n3/2L3,j

(log(ep))2

σ2σmin
. That is,∣∣∣〈E [∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉∣∣∣≤ C

n3/2
L3,j

(log(ep))3/2

σ3
.

As a result,

µ[1,n] ≤
C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin
+

C√
n
L3,max

(log(ep))2

σ2min{σmin, σ
√

log(ep)}

+

n∑
j=1

∣∣∣E[R(4,1)
Xj

−R
(4,1)
Yj

]∣∣∣+ n∑
j=3

j−2∑
k=1

∣∣∣E[R(6)
Xj ,Xk

−R
(6)
Xj ,Yk

]∣∣∣.
Moreover, the summation of R(4,1)

Xj
and R

(6)
Xj ,Xk

, we use the same Jn to partition them. The
dual induction based on the resulting induction lemma dervies the desired conclusion.

5.6. 1-ring dependence and permutation argument. We note that the Lindeberg swap-
ping in Eq. (9) is not symmetric with respect to the indices. The asymmetry resulted in
a worse rates in Lemmas 5.4 and 5.5, by having the maximal moment terms, L3,max and
νq,max. To obtain an improved Berry–Esseen bounds with averaged moment terms, L3 and
νq , as in Theorems 3.1 and 3.2, it is desired to relax the asymmetry in the Lindeberg swap-
pings. One such way is to take the average of the upper bounds over permutations of the
indices as done in Deng (2020); Deng and Zhang (2020). However, because 1-dependence
is specific to the index ordering, the only permutation preserving the dependence structure is
the flipping of the indices (i.e., X1 7→Xn,X2 7→Xn−1, . . . ,Xn 7→X1), which is not suffi-
cient for our purpose. We allow more permutations by weakening the dependence structure
to 1-ring dependence. By allowing X1 and Xn dependent on each other, index rotations (i.e.,
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X1 7→Xjo ,X2 7→Xjo+1, . . . ,Xn 7→Xjo−1 with some jo ∈ [1, n]) are added to the catalog of
available permutations. By averaging the upper bound in Eq. (9) over the permutations, we
obtain∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]

∣∣∣
≤ 1

n

n∑
jo=1

n−1∑
j=1

∣∣∣E[ρδr,ϕ(X(jo,jo+j)n +X[jo+j]n + Y(jo+j,jo+n]n)

−ρδr,ϕ(X(jo,jo+j)n + Y[jo+j]n + Y(jo+j,jo+n]n)
]∣∣∣ ,

(25)

where [jo + j]n is jo + j modulo n, and

[i, j]n ≡ {[i]n, [i+ 1]n, . . . , [j − 1]n, [j]n}.

The subscript n notates that the interval is defined modulo n. If the ambient modulo is ob-
vious, we omit the subscript. The other types of intervals, (i, j]n, [i, j)n and (i, j)n, are sim-
ilarly defined. For full notation details, please refer to Appendix A.2. A similar permutation
argument also applies to Lemma 5.5; see Lemma A.6. The dual induction on the resulting
induction lemmas proves Theorem 3.1 for 3 ≤ q < 4. We relegate the proof deatils to Ap-
pendix A.3.

For 4≤ q, there is the second Lindeberg swapping during the decomposition of the third
order remainder terms (e.g., Eq. (23)). The same permutation argument as in Eq. (25) pro-
vides the following averaged version: for 3≤ j ≤ n,〈

E[∇3ρδr,ϕ(X[1,j−1) + Y(j+1,n])−∇3ρδr,ϕ(Y[1,j−1) + Y(j+1,n])],E[X⊗3
j ]
〉

≤ 1

j − 2

j−2∑
ko=1

j−2∑
k=1

〈
E[∇3ρδr,ϕ(X[ko,ko+k)j−2

+X[ko+k]j−2
+ Y(ko+k,ko+j−1)j−2∪(j,n])

−∇3ρδr,ϕ(X[ko,ko+k)j−2
+ Y[ko+k]j−2

+ Y(ko+k,ko+j−1)j−2∪(j,n])],E[X
⊗3
j ]
〉
.

(26)

Then, the dual induction with Lemma A.6 proves Theorem 3.2 for 4 ≤ q. We relegate the
proof deatils to Appendix A.4.
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APPENDIX A: PROOF OF THEOREMS

A.1. Proof details of Section 5.4. We recall from Section 5.4 that

sup
r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣= n∑

j=1

∣∣∣E[R(3,1)
Xj

−R
(3,1)
Yj

]∣∣∣
≤ C√

n
L3,max

(log(ep))2

σ2σmin
+

n∑
j=1

∣∣∣E[R(4,1)
Xj

−R
(4,1)
Yj

]∣∣∣+ n∑
j=3

j−2∑
k=1

∣∣∣E[R(6)
Xj ,Xk

−R
(6)
Xj ,Yk

]∣∣∣,
where R

(6)
Xj ,Wk

= 1
6R

(6,1)
Xj ,Wk

+ 1
2R

(6,2)
Xj ,Wk

+R
(6,3)
Xj ,Wk

.The upper bounds of the remainder terms
are given as the following lemma.

LEMMA A.1. Suppose that Assumption (MIN-EV) holds. For W representing either X
or Y and j, k ∈ [1, n] such that k ≤ j − 2,∣∣∣E[R(4,1)

Wj

]∣∣∣≤Cϕ

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
×min{1, κ[1,j−4)(δ

o
n−j) + κoj},

∣∣∣E[R(6)
Xj ,Wk

]∣∣∣≤CϕL3,max

[
L3,max

(log(ep))3/2

δ3n−k
+ νq,max

(log(ep))(q−1)/2

δq−1
n−k

]
×min{1, κ[1,k−3)(δ

o
n−k) + κok}.

where δ2n−j ≡ δ2 + σ2max{n− j,0}, δon−j ≡ 12δn−j
√

log(pn) and κoj ≡
δn−j log(ep)

σmin

√
max{j,1}

, as

long as δ ≥ σmin and ϕδ ≥ 1
log(ep) .

Back to Eq. (9), we get∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

≤ C√
n
L3

(log(ep))2

σ2σmin

+Cϕ

n∑
j=1

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
min{1, κ[1,j−4)(δ

o
n−j) + κoj}

+Cϕ

n∑
j=3

L3,max

j−2∑
k=1

[
L3,max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]
×min{1, κ[1,k−3)](δ

o
n−k) + κok},
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Partitioning the sum. Again, we partition the summations at Jn = n(1− σ2
min

σ2 log2(4ep)
). For

the first summation, similar calculations with the finite third moment cases lead to

Cϕ

n∑
j=1

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
min{1, κjo+(0,j)(δ

o
n−j) + κoj}

≤ Cϕ√
n

[
L4,max

(log(ep))5/2

σ2σmin
+ νq,max

(log(ep))(q+1)/2

σ2σminδq−4

]
log

(
1 +

√
nσ

δ

)

+Cϕ
∑
j≥Jn

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
κ[1,j)(δ

o
n−j)

by noting Eq. (12) and that

⌊Jn⌋∑
j=1

1

δq−1
n−j

≤
⌊Jn⌋∑
j=1

1

δq−4δ3n−j
≤ C log(ep)

σ2σminδq−4
√
n
, (27)

n∑
j=⌈Jn⌉

κoj−1

δq−1
n−j

≤
n∑

j=⌈Jn⌉

log(ep)

δq−4δ2n−jσmin
√
j − 1

≤ C log(ep)

σ2σminδq−4
√
n
log

(
1 +

√
nσ

δ

)
, (28)

for some universal constant C > 0. On the other hand, for the second summation,

Cϕ

n∑
j=3

L3,max

(j−2)∧⌊Jn⌋∑
k=1

[
L3,max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]

≤ Cϕ√
n

n∑
j=3

L3,max

[
L3,max

(log(ep))7/2

σ2σminδ2n−⌊Jn⌋
+ νq,max

(log(ep))(q+4)/2

σ2σminδ
q−1
n−⌊Jn⌋

]

≤ Cϕ√
n
L3,max

[
L3,max

(log(ep))7/2

σ4σmin
+ νq,max

(log(ep))(q+4)/2

σ4σminδq−3

]
,

where the last inequality comes from
∑n

j=3
1

δ2n−⌊Jn⌋
≤
∑n

j=3
1

(n−⌊Jn⌋)σ2 ≤ C
σ2 , and

Cϕ

n−1∑
j=⌈Jn⌉

L3,max

j−2∑
k=⌈Jn⌉

[
L3,max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]
κok

≤ Cϕ√
n

n−1∑
j=⌈Jn⌉

L3,max

[
L3,max

(log(ep))7/2

σ2σminδ2n−j
+ νq,max

(log(ep))(q+4)/2

σ2σminδ
q−1
n−j

]

≤ Cϕ√
n
L3,max

[
L3,max

(log(ep))7/2

σ4σmin
+ νq,max

(log(ep))(q+4)/2

σ4σminδq−3

]
log

(
1 +

√
nσ

δ

)
,

where the inequliaties follow Eqs. (19) and (28), respectively. In sum, we obtain a finite
fourth moment version of Lemma 5.4:
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LEMMA A.2. If Assumptions (MIN-VAR), (MIN-EV) and (VAR-EV) hold, and q ≥ 4,
then for any δ ≥ σmin,

µ[1,n]

≤ C√
n

[
δ log(ep)

σmin
+

√
log(ep)

ϕσmin
+L3,max

(log(ep))2

σ2σmin

]

+
Cϕ√
n

[
L4,max

(log(ep))5/2

σ2σmin
+ νq,max

(log(ep))(q+1)/2

σ2σminδq−4

]
log

(
1 +

√
nσ

δ

)

+
Cϕ√
n
L3,max

[
L3,max

(log(ep))7/2

σ4σmin
+ νq,max

(log(ep))(q+4)/2

σ4σminδq−3

]
log

(
1 +

√
nσ

δ

)

+Cϕ

n∑
j=⌈Jn⌉

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
κ[1,j−4)(δ

o
n−j)

+Cϕ

n∑
j=⌈Jn⌉

L3,max

j−2∑
k=⌈Jn⌉

[
L3max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]
κ[1,k−3)(δ

o
n−k),

for some absolute constant C > 0.

Dual Induction. In this case, our induction hypothesis on n is
√
nµ[1,n] ≤ µ̃1,nL3,max + µ̃2,nL

1/2
4,max + µ̃3,nν

1/(q−2)
q,max , (HYP-BE-2)

where

µ̃1,n = C1
(log(ep))3/2

√
log(pn)

σ2σmin
log (en) ,

µ̃2,n = C2
log(ep)

√
log(pn)

σσmin
log (en)

µ̃3,n = C3
log(ep)

√
log(pn)

σ2/(q−2)σmin
log (en)

for universal constants C1, C2 and C3 whose values do not change in this subsection. If
C1,C2,C3 ≥ 1, then (HYP-BE-2), requiring µ[1,n] ≤ 1 only, trivially holds for n≤ 9.

Now we consider the case of n > 9. A similar induction argument with the finite third
moment cases proves

√
iκ[1,i](δ)≤ κ̃1,iL3,max + κ̃2,iL

1/2
4,max + κ̃3,iν

1/(q−2)
q,max + κ̃4,iν

1/2
2,max + κ̃5δ, (HYP-AC-2)

where κ̃1,i = C1,κµ̃1,i, κ̃2,i = C2,κµ̃2,i, κ̃3,i = C3,κµ̃3,i, κ̃4,i = C4,κ
log(ep)

√
log(pi)

σmin
and κ̃5 =

C5,κ

√
log(ep)

σmin
for some universal constants C1,κ, C2,κ, C3,κ, C4,κ and C5,κ whose values do

not change in this subsection.
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Now we prove (HYP-BE-2) on n. We first upper bound the last two terms in Lemma A.2:

Cϕ

n∑
j=⌈Jn⌉

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
κ[1,j−4)(δ

o
n−j)

+Cϕ

n∑
j=⌈Jn⌉

L3,max

j−2∑
k=⌈Jn⌉

[
L3max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]
κ[1,k−3)(δ

o
n−k).

Applying (HYP-AC-2) to κ[1,j−4)(δ
o
n−j),

Cϕ

n∑
j=⌈Jn⌉

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]
κ[1,j−4)(δ

o
n−j)

≤Cϕ

n∑
j=⌈Jn⌉

[
L4,max

(log(ep))3/2

δ3n−j
+ νq,max

(log(ep))(q−1)/2

δq−1
n−j

]

×
[
κ̃1,j−5 L3,max + κ̃2,j−5 L

1/2
4,max + κ̃3,j−5 ν

1/(q−2)
q,max + κ̃4,j−5 ν

1/2
2,max + κ̃5δ

o
n−j

]
≤ Cϕ√

n

[
L4,max(log(ep))

3/2 + νq,max
(log(ep))(q−1)/2

δq−4

]

×


(κ̃1,j−5 L3,max + κ̃2,j−5 L

1/2
4,max + κ̃3,j−5 ν

1/(q−2)
q,max + κ̃4,j−5 ν

1/2
2,max)

n∑
j=⌈Jn⌉

1

δ3n−j

+ κ̃5
√

log(pn)

n∑
j=⌈Jn⌉

1

δ2n−j


≤ Cϕ√

n

[
L4,max(log(ep))

3/2 + νq,max
(log(ep))(q−1)/2

δq−4

]

×


(µ̃1,n−1 L3,max + µ̃2,n−1 L

1/2
4,max + µ̃3,n−1 ν

1/(q−2)
q,max )

1

δ
+

log(ep)
√

log(pn)

σmin

ν
1/2
2,max

δ

+

√
log(ep) log(pn)

σmin
log

(
1 +

√
nσ

δ

)
 .
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by Eq. (19) and that κ̃1,n−1 = C1,κµ̃1,n−1, κ̃2,n−1 = C2,κµ̃2,n−1, κ̃3,n−1 = C3,κµ̃3,n−1,

κ̃4,n−1 = C4,κ
log(ep)

√
log(p(n−1))

σmin
and κ̃5 = C5,κ

√
log(ep)

σmin
. Similarly,

Cϕ

n∑
j=⌈Jn⌉

L3,max

j−2∑
k=⌈Jn⌉

[
L3max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]
κ[1,k−3)(δ

o
n−k)

≤Cϕ

n∑
j=⌈Jn⌉

L3,max

j−2∑
k=⌈Jn⌉

[
L3max

(log(ep))5/2

δ5n−k
+ νq,max

(log(ep))(q+2)/2

δq+2
n−k

]

×
[
κ̃1,k−4 L3,max + κ̃2,k−4 L

1/2
4,max + κ̃3,k−4 ν

1/(q−2)
q,max + κ̃4,k−4 ν

1/2
2,max + κ̃5δ

o
n−j

]
≤Cϕ

n∑
j=⌈Jn⌉

L3,max

[
L3max

(log(ep))5/2

δ3n−j
+ νq,max

(log(ep))(q+2)/2

δqn−j

]

×
[
κ̃1,k−4 L3,max + κ̃2,k−4 L

1/2
4,max + κ̃3,k−4 ν

1/(q−2)
q,max + κ̃4,k−4 ν

1/2
2,max + κ̃5δ

o
n−j

]
≤CϕL3,max

[
L3max(log(ep))

5/2 + νq,max
(log(ep))(q+2)/2

δq−3

]

×


(µ̃1,n−1 L3,max + µ̃2,n−1 L

1/2
4,max + µ̃3,n−1 ν

1/(q−2)
q,max )

1

δ
+

log(ep)
√

log(pn)

σmin

ν
1/2
2,max

δ

+

√
log(ep) log(pn)

σmin
log

(
1 +

√
nσ

δ

)
 .

In sum, as long as δ ≥ ν
1/2
2,max

√
log(ep)≥ σmin and ϕ > 0,

√
nµ[1,n]

≤ C(4)ϕ


L4,max

(log(ep))3/2

σ2δ
+ νq,max

(log(ep))(q−1)/2

σ2δq−3

+L3,max

[
L3,max

(log(ep))5/2

σ4δ
+ νq,max

(log(ep))(q+2)/2

σ4δq−2

]


×
[
µ̃1,n−1L3,max + µ̃2,n−1L

1/2
4,max + µ̃3,n−1ν

1/(q−2)
q,max

]
+ C(4)

[
δ log(ep)

σmin
+

√
log(ep)

ϕσmin
+L3,max

(log(ep))2

σ2σmin

]

+ C(4)ϕ


L4,max

(log(ep))3/2

σ2
+ νq,max

(log(ep))(q−1)/2

σ2δq−4

+L3,max

[
L3,max

(log(ep))5/2

σ4
+ νq,max

(log(ep))(q+2)/2

σ4δq−3

]
 log

(
1 +

√
nσ

δ

)

where C(4) is a universal constant whose value does not change in this subsection. Taking

δ = 8C(4)

(
L3,max

σ2

√
log(ep) +

(
L4,max

σ2

) 1

2

+
(
νq,max

σ2

) 1

q−2

)√
log(ep) ≥ ν

1/2
2

√
log(ep) and
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ϕ= 1

δ
√

log(ep)
,

√
nµ[1,n]

≤ 1

2
max
j<n

µ̃1,jL3 +
1

2
max
j<n

µ̃2,jL
1/2
4 +

1

2
max
j<n

µ̃3,jν
1/(q−2)
q

+ C(5)

(
L3

(log(ep))3/2

σ2
+L

1/2
4

log(ep)

σ
+ ν1/(q−2)

q

log(ep)

σ2/(q−2)

)√
log(pn)

σmin
log (en)

for another universal constant C(5), whose value only depends on C′′. Taking C1 = C2 = C3 =
max{2C(5),1},

µ̃1,n = C1
(log(ep))3/2

√
log(pn)

σ2σmin
log (en) ,

µ̃2,n = C2
log(ep)

√
log(pn)

σσmin
log (en)

µ̃3,n = C3
log(ep)

√
log(pn)

σ2/(q−2)σmin
log (en)

satisfies
√
nµ[1,n] ≤ µ̃1,nL3 + µ̃2,nL

1/2
4 + µ̃3,nν

1/(q−2)
q ,

which proves (HYP-BE-2) at n. This proves our theorem.

A.2. Review on the ring Zn. To facilitate the notations under permutation arguments,
we introduce the notion of integer ring Zn. Let Zn ≡ Z/nZ be the ring with additive operation
+ and multiplicative operation · of modulo n. For brevity, we allow a slight notational conflict
to denote the elements by 1, . . . , n such that n(= 0) and 1 are additive and multiplicative
identities, respectively. It means that the next element of n is 1, which is the same as n+ 1
modulo n. When we need to specify, we denote i modulo n by [i]n. We reference textbooks
in abstract algebra such as Lang (2012) for detailed properties of the ring structure.

We also define a distance and intervals in Zn. For i, j ∈ Zn, the distance between i and j
is defined as

d(i, j) =min{|i− j + kn| : k ∈ Z},

where the operations inside the parentheses are on Z, and the closed interval is defined as

[i, j]n = {[i]n, [i+ 1]n, . . . , [j − 1]n, [j]n}.

The subscript n notates that the interval is defined over the ring Zn. If the ambient ring is
obvious, we omit the subscript. The other types of intervals, (i, j]n, [i, j)n and (i, j)n, are
defined similarly.

A.3. Proof of Theorem 3.1. The proof for 1-ring dependent cases with finite third mo-
ments is similar with the 1-dependent cases in Section 5. In 1-ring depent cases, we need to
address the additional dependence between X1 and Xn and the average across the permuta-
tions in Section 5.6.
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Breaking the ring. First, we note that the Berry-Esseen bound under 1-ring dependence can
be reduced to the bound under 1-dependence:

sup
r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

≤ sup
r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n))]−E[ρδr,ϕ(Y[1,n))]
∣∣∣

+ sup
r∈Rd

∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(X[1,n))]
∣∣∣+ sup

r∈Rd

∣∣∣E[ρδr,ϕ(Y[1,n])]−E[ρδr,ϕ(Y[1,n))]
∣∣∣.

Note that we removed Xn and Yn from X[1,n] and Y[1,n], respectively, to break the 1-ring
dependence. By the Taylor expansion centered at X[1,n),

ρδr,ϕ(X[1,n])− ρδr,ϕ(X[1,n))

=
1

2

〈
∇2ρδr,ϕ(X(1,n−1)),X

⊗2
n

〉
+
〈
∇2ρδr,ϕ(X(2,n−1)),Xn ⊗X1

〉
+
〈
∇2ρδr,ϕ(X(1,n−2)),Xn−1 ⊗Xn

〉
+R

(3)
X ,

(29)

where R
(3)
X is specified in Appendix C. This is the same for ρδr,ϕ(Y[1,n]) − ρδr,ϕ(Y[1,n)) but

with Y in place of X .

First Lindeberg swapping. We bound supr∈Rd

∣∣∣E[ρδr,ϕ(X[1,n))]−E[ρδr,ϕ(Y[1,n))]
∣∣∣ by the

Lindeberg swapping as in Section 5.1. Here we define

WC
[i,j] ≡X[1,i) + Y(j,n).

Note that unlike Section 5.1, the n-th element is removed. Then,
n−1∑
j=1

E
[
ρδr,ϕ(W

C
[j,j] +Xj)− ρδr,ϕ(W

C
[j,j] + Yj)

]
=

n−1∑
j=1

E
[
R

(3,1)
Xj

−R
(3,1)
Yj

]
, (30)

where R
(3,1)
Xj

and R
(3,1)
Yj

are remainder terms of the Taylor expansions specified in Ap-
pendix C.2.

Second moment decomposition and second Lindeberg swapping. To bound the second
moment terms in Eq. (29), we re-apply the Lindeberg swapping. For simplicity, we only
look at

〈
∇2ρδr,ϕ(X(1,n−1)),X

⊗2
n

〉
, but similar arguments work for the other second moment

terms. Because E[X⊗2
n ] = E[Y ⊗2

n ],〈
E
[
∇2ρδr,ϕ(X(1,n−1))

]
,E
[
X⊗2
n

]〉
−
〈
E
[
∇2ρδr,ϕ(Y(1,n−1))

]
,E
[
Y ⊗2
n

]〉
=

n−2∑
j=2

〈
E
[
∇2ρδr,ϕ(X(1,j) +Xj + Y(j,n−1))−∇2ρδr,ϕ(X(1,j) + Yj + Y(j,n−1))

]
,E
[
X⊗2
n

]〉
,

By the Taylor expansion up to order 3,〈
E
[
∇2ρδr,ϕ(X(1,n−1))

]
,E
[
X⊗2
n

]〉
−
〈
E
[
∇2ρδr,ϕ(Y(1,n−1))

]
,E
[
X⊗2
n

]〉
=

n−2∑
j=2

E
[
R

(3,2,1)
Xj

−R
(3,2,1)
Yj

]
,
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where R
(3,2,1)
Xj

is the third-order remainder, specified in Appendix C.3. Similarly,〈
E
[
∇2ρδr,ϕ(X(2,n−1))

]
,E [Xn ⊗X1]

〉
−
〈
E
[
∇2ρδr,ϕ(Y(2,n−1))

]
,E [Xn ⊗X1]

〉
=

n−2∑
j=3

E
[
R

(3,2,2)
Xj

−R
(3,2,2)
Yj

]
, and

〈
E
[
∇2ρδr,ϕ(X(1,n−2))

]
,E [Xn ⊗Xn−1]

〉
−
〈
E
[
∇2ρδr,ϕ(Y(1,n−2))

]
,E [Xn ⊗Xn−1]

〉
=

n−3∑
j=2

E
[
R

(3,2,3)
Xj

−R
(3,2,3)
Yj

]
,

where R
(3,2,2)
Wj

and R
(3,2,3)
Wj

are simlarly derived third-order remainder terms. Putting all the
above terms together,

ρδr,ϕ(X[1,n])− ρδr,ϕ(X[1,n))− ρδr,ϕ(Y[1,n]) + ρδr,ϕ(Y[1,n))

=R
(3)
X −R

(3)
Y +

n−2∑
j=2

E
[
R

(3,2)
Xj

−R
(3,2)
Yj

]
,

where R
(3,2)
Wj

= 1
2R

(3,2,1)
Wj

+R
(3,2,2)
Wj

+R
(3,2,3)
Wj

, and∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

≤
∣∣∣ρδr,ϕ(X[1,n))− ρδr,ϕ(Y[1,n))

∣∣∣+ ∣∣∣ρδr,ϕ(X[1,n])− ρδr,ϕ(X[1,n))− ρδr,ϕ(Y[1,n]) + ρδr,ϕ(Y[1,n))
∣∣∣

≤
∣∣∣R(3)

X −R
(3)
Y

∣∣∣+ n−1∑
j=1

∣∣∣E[R(3,1)
Xj

−R
(3,1)
Yj

]∣∣∣+ n−2∑
j=2

∣∣∣E[R(3,2)
Xj

−R
(3,2)
Yj

]∣∣∣.
Remainder lemma. Similar to Section 5.1, the remainder terms R(3)

W , R(3,1)
Wj

and R
(3,2)
Wj

are
upper bounded by conditional anti-concentration probability bounds. For q > 0, let

L̃q,j ≡
j+3∑

j′=j−3

Lq,j′ and L̃q,[k]j−2
≡

k+3∑
k′=k−3

Lq,[k′]j−2
,

where [k′]j−2 is k′ modulo j − 2, and ν̃q,j and ν̃q,[k]j−2
are similarly defined.

LEMMA A.3. Suppose that Assumption (MIN-EV) holds. For W representing either X
or Y and j ∈ Zn,∣∣∣E[R(3)

W

]∣∣∣≤C
[
L̃3,n + ϕq−3ν̃q,n

] (log(ep))3/2
δ3

min{κ(2,n−1)(δ
o
0) + κon,1},

∣∣∣E[R(3,1)
Wj

]∣∣∣≤C
[
L̃3,j + ϕq−3ν̃q,j

] (log(ep))3/2
δ3n−j

min{κ[1,j−3)(δ
o
n−j) + κoj ,1},

∣∣∣E[R(3,2)
Wj

]∣∣∣≤C
[
L̃3,j + L̃3,n + ϕq−3 (ν̃q,j + νq,n)

] (log(ep))3/2
δ3n−j

×min{κ(1,j−2)(δ
o
n−j) + κoj ,1},
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where δ2n−j ≡ δ2 + σ2max{n− j,0}, δon−j ≡ 12δn−j
√

log(pn) and κoj ≡
δn−j log(ep)

σmin

√
max{j,1}

, as

long as δ ≥ σmin and ϕδ ≥ 1
log(ep) .

Permutation argument. We apply the permutation arguement to Eq. (9) as in Eq. (25).∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

≤ 1

n

n∑
jo=1

n−1∑
j=1

∣∣∣E[ρδr,ϕ(X(jo,jo+j) +Xjo+j + Y(jo+j,jo+n])

−ρδr,ϕ(X(jo,jo+j) + Yjo+j + Y(jo+j,jo+n])
]∣∣∣ ,

where the indices of X and Y are defined in Zn. Together with the results in Lemma A.3,∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

≤ C

n

n∑
jo=1

[
L̃3,jo + ϕq−3ν̃q,jo

] (log(ep))3/2
δ3

min{1, κjo+(2,n−1)(δ
o
0) + κon}

+
C

n

n∑
jo=1

n−2∑
j=2

[
L̃3,jo + ϕq−3ν̃q,jo

] (log(ep))3/2
δ3n−j

min{1, κjo+(1,j−2)(δ
o
n−j) + κoj}

+
C

n

n∑
jo=1

n−1∑
j=1

[
L̃3,jo+j + ϕq−3ν̃q,jo+j

] (log(ep))3/2
δ3n−j

min{1, κjo+(1,j−3)(δ
o
n−j) + κoj},

where jo + (2, n − 1) is the shifted interval of (2, n − 1) by jo in Zn, namely, {[jo +
3]n, . . . , [jo + n− 2]n}.

Partitioning the sum. We partition the summation over j at Jn = n(1 − σ2
min

σ2 log2(4ep)
). A

notable distinction from Section 5.1 is that we should also take averages over jo alongside
the summations over j. For j < Jn,

C

n

n∑
jo=1

∑
j<Jn

[
L̃3,jo+j + ϕq−3ν̃q,jo+j

] (log(ep))3/2
δ3n−j

min{1, κjo+(1,j−3)(δ
o
n−j) + κoj}

≤ C

n

n∑
jo=1

∑
j<Jn

[
L̃3,jo+j + ϕq−3ν̃q,jo+j

] (log(ep))3/2
δ3n−j

=C
∑
j<Jn

[
L3 + ϕq−3νq

] (log(ep))3/2
δ3n−j

≤ C√
n

[
L3 + ϕq−3νq

] (log(ep))5/2
σ2σmin

,
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because of Eq. (12). For j ≥ Jn,

C

n

n∑
jo=1

∑
j≥Jn

[
L̃3,jo+j + ϕq−3ν̃q,jo+j

] (log(ep))3/2
δ3n−j

min{1, κjo+(0,+j)(δ
o
n−j) + κoj}

≤ C

n

n∑
jo=1

∑
j≥Jn

[
L̃3,jo+j + ϕq−3ν̃q,jo+j

] (log(ep))3/2
δ3n−j

κ(jo,jo+j)(δ
o
n−j)

+C
∑
j≥Jn

[
L3 + ϕq−3νq

] (log(ep))3/2
δ3n−j

κoj−1.

The last term is upper bounded by

C
∑
j≥Jn

[
L3 + ϕq−3νq

] (log(ep))3/2
δ3n−j

κoj−1

≤ C√
n

[
L3 + ϕq−3νq

] (log(ep))5/2
σ2σmin

log

(
1 +

√
nσ

δ

)
because of Eq. (13). In sum, we obtain the following induction from κI(δ) for I ⊂ Zn to

µ[1,n] = µ(X[1,n], Y[1,n]).

LEMMA A.4. If Assumptions (MIN-VAR), (MIN-EV) and (VAR-EV) hold, then for any
δ ≥ σmin,

µ[1,n]

≤ C√
n

δ log(ep) +
√

log(ep)/ϕ

σmin
+

C√
n

[
L3 + ϕq−3νq

] (log(ep))5/2
σ2σmin

log(en)

+
C

n

n∑
jo=1

n∑
j=⌈Jn⌉

[
L̃3,jo + ϕq−3ν̃q,jo

] (log(ep))3/2
δ3n−j

κjo+(3,j−2)(δ
o
n−j)

+
C

n

n∑
jo=1

n−1∑
j=⌈Jn⌉

[
L̃3,jo+j + ϕq−3ν̃q,jo+j

] (log(ep))3/2
δ3n−j

κjo+(1,j−4)(δ
o
n−j),

for some absolute constant C > 0.

Anti-concentration inequality. We note the following monotonic property of κ:

LEMMA A.5. Suppose that I0 and I are intervals in Zn satisfying I ′ ⊂ I and that δ′ ≥
δ > 0. Then, κI(δ)≤ κI′(δ

′).

PROOF.
κ[1,i](δ) = sup

r∈Rp

P[XI ∈Ar,δ|XZn\I ]

= sup
r∈Rp

E
[
P[XI′ ∈Ar−XI\I′ ,δ|XZn\I′ ]

∣∣XZn\I
]

≤ sup
r∈Rp

E
[
P[X[1,io] ∈Ar−XI\I′ ,δ′ |XZn\I′ ]

∣∣XZn\I
]

≤ sup
r∈Rp

E
[
κI′(δ

′)
∣∣XZn\I

]
= κI′(δ

′).
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Thus, for any δ > 0, κ[1,i](δ) ≤
∑io−1

j=1 κ[j,j+io+1] where io = ⌊ i2⌋. Thus, we obtain the
following averaged version of Lemma 5.5.

LEMMA A.6. Suppose that Assumptions (MIN-VAR) and (MIN-EV) hold. For any i ∈
[6, n) and δ > 0,

κ[1,i](δ)

≤ C

io − 1

io−1∑
j=1

(√
log(ep)

ε
(ν1,j+1 + ν1,j+io) κj+(1,io)(ε

o) + µj+(1,io)

)

+min

1,C
δ+ 2εo

σmin

√
log(ep)

io − 2

+
C

σmin
ν1,(1,i)

√
log(ep)

io − 2
,

where io ≡ ⌊ i2⌋ and εo ≡ 20ε
√

log(p(no − 2)), as long as ε≥ σmin

Dual Induction. Let our induction hypothesis on n be
√
nµ[1,n] ≤ µ̃1,nL3 + µ̃2,nν

1/(q−2)
q , (HYP-BE-3)

where

µ̃1,n = C1
(log(ep))3/2

√
log(pn)

σ2σmin
log (en) ,

µ̃2,n = C2
log(ep)

√
log(pn)

σ2/(q−2)σmin
log (en)

for universal constants C1 and C2 whose values do not change in this subsection. If C1,C2,≥
1, then (HYP-BE-3), requiring µ[1,n] ≤ 2 only, trivially holds for n≤ 16.

Now we consider the case of n > 16. Suppose that the induction hypotheses hold for all
intervals with lengths smaller than n. We first derive an anti-concentration inequality for any
such intervals. Without loss of generality, we only consider the intervals [1, i] with i < n. We
claim that

√
iκ[1,i](δ)≤ κ̃1,iL3,[1,i] + κ̃2,iν

1/(q−2)
q,[1,i] + κ̃3,iν

1/2
2,[1,i] + κ̃4δ, (HYP-AC-3)

where κ̃1,i = C1,κµ̃1,i, κ̃2,i = C2,κµ̃2,i, κ̃3,i = C3,κ
log(ep)

√
log(pi)

σmin
and κ̃4 = C4,κ

√
log(ep)

σmin
for

some universal constants C1,κ, C2,κ, C3,κ, and C4,κ whose values do not change over lines.
If C1,κ,C2,κ,C3,κ,C4,κ,≥ 1, then (HYP-BE-3), requiring κ[1,n](δ) ≤ 1 for all δ > 0 only,
trivially holds for i≤ 16. For i > 16, assume that (HYP-AC-3) holds for all smaller i’s. By
Lemma A.6, for any ε≥ σmin and δ > 0,

κ[1,i](δ)

≤ C

io − 1

io−1∑
j=1

√
log(ep)

ε
(ν1,j+1 + ν1,j+io)min{1, κj+(1,io)(ε

o)}

+
C

io − 1

io−1∑
j=1

µj+(1,io) +C
δ+ 2εo

σmin

√
log(ep)

io − 2
+C

ν1,(1,i)

σmin

log(ep)√
io − 2

,
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where io = ⌊ i2⌋, εo = 20ε
√

log(p(io − 2)) and C > 0 is an absolute constant. Due to
(HYP-AC-3) and (HYP-BE-3) on intervals j + (1, io)⊊ [1, i],

κ[1,i](δ)

≤ C

(io − 1)3/2

io−1∑
j=1

√
log(ep)

ε
(ν1,j+1 + ν1,j+io)

×
[
κ̃1,io−2L3,j+(1,io) + κ̃2,io−2ν

1/(q−2)
q,j+(1,io)

+ κ̃3,io−2ν
1/2
2,j+(1,io)

+ κ̃4δ
]

+
C

(io − 1)3/2

io−1∑
j=1

µ̃1,io−2L3,j+(1,io) +
C

(io − 1)3/2

io−1∑
j=1

µ̃2,io−2L
1/2
4,j+(1,io)

+
C

(io − 1)3/2

io−1∑
j=1

µ̃3,io−2ν
1/(q−2)
q,j+(1,io)

+C
δ+ 2εo

σmin

√
log(ep)

io − 2
+C

ν1,(1,i)

σmin

log(ep)√
io − 2

.

To provide an upper bound in terms of L3 and νq , we use the following lemma based on
Jensen’s inequality.

LEMMA A.7. Suppose that j, k ≥ n
2 . For any q1, q2, q3 > 0 and α≤ 1,

1

n

n∑
jo=1

Lq1,jo+jL
α
q2,(jo,jo+j) ≤CLq1L

α
q2

and

1

n

n∑
jo=1

Lq1,jo+j
j − 1

j−1∑
ko=1

Lq2,jo+[ko+k]j−1
L
α
q3,jo+(l,k+l)j−1

≤CLq1Lq2L
α
q3 ,

where jo + (ko, ko + k)j−1 is the shifted interval of (ko, ko + k)j−1 by jo in Zn, namely,
{jo + [ko + 1]j−1, . . . , jo + [ko + k − 1]j−1}. The same inequality holds when some L is
replaced with ν.

Based on the lemma,

1

io − 1

io−1∑
j=1

L3,j+(1,io) ≤CL3,(2,j−1),

1

io − 1

io−1∑
j=1

(ν1,j+1 + ν1,j+io)L3,j+(1,io) ≤Cν1,(1,i)L3,(2,i−1),

1

io − 1

io−1∑
j=1

(ν1,j+1 + ν1,j+io)ν
1/2
2,j+(1,io)

≤Cν1,(1,i)ν
1/2
2,(2,i−1).

Similar inequalities hold with ν1/(q−2)
q in place of L3. As a result, we obtain a similar re-

cursive inequality on κ̃’s with Eq. (18) except that L3,max, νq,max, ν1,max and ν2,max are re-
placed with Lq,[1,i], νq,[1,i], ν1,[1,i] and ν2,[1,i], respectively. Solving the recursive inequality,
we prove (HYP-AC-3). The proof of (HYP-BE-3) also proceeds similarly using Lemma A.7.
In the end, we obtain a similar recursive inequality for µ̃’s with Section 5.3 except that L3,max

and νq,max are replaced with L3 and νq , respectively. Solving the recursive inequality, we
prove the desired (HYP-BE-3).
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A.4. Proof of Theorem 3.2. We recall from Appendix A.3 that∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]
∣∣∣

≤
∣∣∣ρδr,ϕ(X[1,n))− ρδr,ϕ(Y[1,n))

∣∣∣+ ∣∣∣ρδr,ϕ(X[1,n])− ρδr,ϕ(X[1,n))− ρδr,ϕ(Y[1,n]) + ρδr,ϕ(Y[1,n))
∣∣∣

≤
∣∣∣R(3)

X −R
(3)
Y

∣∣∣+ n−1∑
j=1

∣∣∣E[R(3,1)
Xj

−R
(3,1)
Yj

]∣∣∣+ n−2∑
j=2

∣∣∣E[R(3,2)
Xj

−R
(3,2)
Yj

]∣∣∣.
In Section 5.4, we improved the rate by decomposing the third order remainder R(3,1)

Wj
when

the fourth moments were finite. Namely,
n−1∑
j=1

∣∣∣E[R(3,1)
Xj

−R
(3,1)
Yj

]∣∣∣
≤ C√

n
L3

(log(ep))2

σ2σmin
+

n−1∑
j=1

∣∣∣E[R(4,1)
Xj

−R
(4,1)
Yj

]∣∣∣+ n−1∑
j=3

j−2∑
k=1

∣∣∣E[R(6)
Xj ,Xk

−R
(6)
Xj ,Yk

]∣∣∣.
In 1-ring dependence cases, there exists additional third-order remainder terms R

(3)
W and

R
(3,2)
Xj ,Wk

, which came up while breaking the 1-ring dependence in Appendix A.3. Based on
Tyalor expansions up to order 4 and the second moment matching between Xj and Yj , we
decompose the additional remainder terms. First,

R
(3)
X

=
1

6

〈
∇3ρδr,ϕ(X(1,n−1)),X

⊗3
n

〉
+
〈
∇3ρδr,ϕ(X(1,n−3)),Xn−2 ⊗Xn−1 ⊗Xn

〉
+
〈
∇3ρδr,ϕ(X(2,n−2)),Xn−1 ⊗Xn ⊗X1

〉
+
〈
∇3ρδr,ϕ(X(3,n−1)),Xn ⊗X1 ⊗X2

〉
+

1

2

〈
∇3ρδr,ϕ(X(1,n−2)),Xn−1 ⊗Xn ⊗ (Xn−1 +Xn)

〉
+

1

2

〈
∇3ρδr,ϕ(X(2,n−1)),Xn ⊗X1 ⊗ (X1 +Xn)

〉
+R

(4)
X ,

(31)
where R(4)

X is specified in Appendix C. This is the same for ρδr,ϕ(Y[1,n])−ρδr,ϕ(Y[1,n)) but with
Y in place of X . To bound the third-order moment terms, we re-apply the Lindeberg swap-
ping and the Taylor expansion up to the sixth order as we did to

〈
E[∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))],E[X⊗3

j ]
〉

in Section 5.4. As a result,∣∣∣R(3)
X −R

(3)
Y

∣∣∣≤ C√
n
L3

(log(ep))2

σ2σmin
+
∣∣∣R(4)

X −R
(4)
Y

∣∣∣+ n−2∑
k=2

∣∣∣E[R(6)
X,Xk

−R
(6)
X,Yk

]∣∣∣,
where R

(6)
X,Wk

is the sixth-order remainder term specified in Appendix C.

For
∑n−2

j=2

∣∣∣E[R(3,2)
Xj

−R
(3,2)
Yj

]∣∣∣, by the Taylor expansion up to the fourth order,

n−2∑
j=2

E
[
R

(3,2)
Xj

−R
(3,2)
Yj

]
=

n−2∑
j=2

E
[
R

(4,2)
Xj

−R
(4,2)
Yj

]
,
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where R
(4,2)
Xj

is the fourth-order remainder, specified in Appendix C.3. Putting all the above
results together, we get∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]

∣∣∣
≤ C√

n
L3

(log(ep))2

σ2σmin
+
∣∣∣R(4)

X −R
(4)
Y

∣∣∣+ n−1∑
j=1

∣∣∣E[R(4,1)
Xj

−R
(4,1)
Yj

]∣∣∣+ n−2∑
j=2

∣∣∣E[R(4,2)
Xj

−R
(4,2)
Yj

]∣∣∣
+

n−2∑
k=2

∣∣∣E[R(6)
X,Xk

−R
(6)
X,Yk

]∣∣∣+ n−1∑
j=3

j−2∑
k=1

∣∣∣E[R(6)
Xj ,Xk

−R
(6)
Xj ,Yk

]∣∣∣.
Remainder lemma. Similar to Section 5.1, the remainder terms are upper bounded by con-
ditional anti-concentration probability bounds. For q > 0, let

L̃q,j ≡
j+4∑

j′=j−4

Lq,j′ and L̃q,[k]j−2
≡

k+4∑
k′=k−4

Lq,[k′]j−2
,

where [k′]j−2 is k′ modulo j − 2, and ν̃q,j and ν̃q,[k]j−2
are similarly defined.

LEMMA A.8. Suppose that Assumption (MIN-EV) holds. For W representing either X
or Y and j, k ∈ Zn such that k ≤ j − 2,∣∣∣E[R(4)

W

]∣∣∣≤Cϕ

[
L̃4,n

(log(ep))3/2

δ3
+ ν̃q,n

(log(ep))(q−1)/2

δq−1

]
×min{κ(3,n−2)(δ

o
0) + κon,1},

∣∣∣E[R(4,1)
Wj

]∣∣∣≤Cϕ

[
L̃4,j

(log(ep))3/2

δ3n−j
+ ν̃q,j

(log(ep))(q−1)/2

δq−1
n−j

]
×min{κ[1,j−4)(δ

o
n−j) + κoj ,1},

∣∣∣E[R(4,2)
Wj

]∣∣∣≤Cϕ

[(
L̃4,j + L̃4,n

) (log(ep))3/2

δ3n−j
+ (ν̃q,j + ν̃q,n)

(log(ep))(q−1)/2

δq−1
n−j

]
×min{κ(1,j−2)(δ

o
n−j) + κoj ,1},

∣∣∣E[R(6)
X,Wk

]∣∣∣≤CϕL̃3,n

[
L̃3,[k]n−2

(log(ep))5/2

δ5n−k
+ ν̃q,[k]n−2

(log(ep))(q+2)/2

δq+2
n−k

]
×min{κ[1,k−3)(δ

o
n−k) + κok,1}.

∣∣∣E[R(6)
Xj ,Wk

]∣∣∣≤CϕL̃3,j

[
L̃3,[k]j−2

(log(ep))5/2

δ5n−k
+ ν̃q,[k]j−2

(log(ep))(q+2)/2

δq+2
n−k

]
×min{κ[1,k−3)(δ

o
n−k) + κok,1}.

where δ2n−j ≡ δ2 + σ2max{n− j,0}, δon−j ≡ 12δn−j
√

log(pn) and κoj ≡
δn−j log(ep)

σmin

√
max{j,1}

, as

long as δ ≥ σmin and ϕδ ≥ 1
log(ep) .
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Permutation argument. Back to Eq. (26), for 3≤ j ≤ n− 1,〈
E[∇3ρδr,ϕ(X[1,j−1) + Y(j+1,n])−∇3ρδr,ϕ(Y[1,j−1) + Y(j+1,n])],E[X⊗3

j ]
〉

≤ 1

j − 2

j−2∑
ko=1

j−2∑
k=1

〈
E[∇3ρδr,ϕ(X[ko,ko+k)j−2

+X[ko+k]j−2
+ Y(ko+k,ko+j−1)j−2∪(j,n])

−∇3ρδr,ϕ(X[ko,ko+k)j−2
+ Y[ko+k]j−2

+ Y(ko+k,ko+j−1)j−2∪(j,n])],E[X
⊗3
j ]
〉

≤Cϕ
L̃3,j

j − 2

j−2∑
ko=1

j−2∑
k=1

[
L̃3,[ko+k′]j−2

(log(ep))3/2

δ3n−k
+ ν̃q,[ko+k′]j−2

(log(ep))(q−1)/2

(δn−k/2)q−1

]
×min{κ(ko,ko+k−3)j−2

(δon−k) + κok,1}.

The permutation arguement also applies to the first Lindeberg swapping in Eq. (25). Together
with the results in Lemma A.8,∣∣∣E[ρδr,ϕ(X[1,n])]−E[ρδr,ϕ(Y[1,n])]

∣∣∣
≤ 1

n

n∑
jo=1

n−1∑
j=1

E
[
ρδr,ϕ(X(jo,jo+j) +Xjo+j + Y(jo+j,jo+n])− ρδr,ϕ(X(jo,jo+j) + Yjo+j + Y(jo+j,jo+n])

]

≤ C√
n
L3

(log(ep))2

σ2σmin

+
Cϕ

n

n∑
jo=1

[
L̃4,jo

(log(ep))3/2

δ3
+ ν̃q,jo

(log(ep))(q−1)/2

(δ/2)q−1

]
min{1, κjo+(3,n−2)(δ

o
0) + κon}

+
Cϕ

n

n∑
jo=1

n−2∑
j=2

[
L̃4,jo

(log(ep))3/2

δ3n−j
+ ν̃q,jo

(log(ep))(q−1)/2

(δn−j/2)q−1

]
min{1, κjo+(1,j−2)(δ

o
n−j) + κoj}

+
Cϕ

n

n∑
jo=1

n−1∑
j=1

[
L̃4,jo+j

(log(ep))3/2

δ3n−j
+ ν̃q,jo+j

(log(ep))(q−1)/2

(δn−j/2)q−1

]
min{1, κjo+(1,j−4)(δ

o
n−j) + κoj}

+
Cϕ

n

n∑
jo=1

n∑
j=3

L̃3,jo+j

j − 2

j−2∑
ko=1

j−2∑
k=1

[
L̃3,jo+[ko+k]j−2

(log(ep))5/2

δ5n−k
+ ν̃q,jo+[ko+k]j−2

(log(ep))(q+2)/2

(δn−k/2)q+2

]
×min{1, κjo+(ko,ko+k−3)j−2

(δon−k) + κok},

where jo + (ko, ko + k)j−1 is the shifted interval of (ko, ko + k)j−1 by jo in Zn, namely,
{jo + [ko + 1]j−1, . . . , jo + [ko + k− 1]j−1}.

Partitioning the sum. Again, we partition the summations at Jn = n(1− σ2
min

σ2 log2(4ep)
). The

calculations of the first three summations are similar to those in Appendix A.3. Here we only
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take a look at the last summation where the summation iterates. For k < Jn,

1

n

n∑
jo=1

n∑
j=3

L̃3,jo+j

j − 2

j−2∑
ko=1

(j−2)∧⌊Jn⌋∑
k=1

[
L̃3,jo+[ko+k]j−2

(log(ep))5/2

δ5n−k
+ ν̃q,jo+[ko+k]j−2

(log(ep))(q+2)/2

δq+2
n−k

]

≤ C

n

n∑
jo=1

n∑
j=3

L̃3,jo+j

(j−2)∧⌊Jn⌋∑
k=1

[
L3
n(log(ep))5/2

(j − 2)δ5n−k
+ νq

n(log(ep))(q+2)/2

(j − 2)δq+2
n−k

]

≤ C√
n

n∑
j=3

L3

[
L3

n(log(ep))7/2

(j − 2)σ2σminδ2n−⌊Jn⌋
+ νq

n(log(ep))(q+4)/2

(j − 2)σ2σminδ
q−1
n−⌊Jn⌋

]

≤ C√
n
L3

[
L3

(log(ep))7/2

σ4σmin
+ νq

(log(ep))(q+4)/2

σ4σminδq−3

]
log(en),

where the third inequality comes from Eq. (12) and the last inequality comes from the fact
that

∑n
j=3

n
(j−2)δ2n−⌊Jn⌋

≤
∑n

j=3
n

(j−2)(n−⌊Jn⌋)σ2 ≤ C
σ2 log(en). For k > Jn,

1

n

n∑
jo=1

n∑
j=⌈Jn⌉

L̃3,jo+j

j − 2

j−2∑
ko=1

j−2∑
k=⌈Jn⌉

[
L̃3,jo+[ko+k]j−2

(log(ep))5/2

δ5n−k
+ ν̃q,jo+[ko+k]j−2

(log(ep))(q+2)/2

δq+2
n−k

]

×min{1, κjo+(ko,ko+k)j−2
(δon−k) + κok}

≤ 1

n

n∑
i=1

n∑
j=⌈Jn⌉

L̃3,jo+j

j − 2

j−2∑
ko=1

j−2∑
k=⌈Jn⌉

[
L̃3,jo+[ko+k]j−2

(log(ep))5/2

δ5n−k
+ ν̃q,jo+[ko+k]j−2

(log(ep))(q+2)/2

δq+2
n−k

]

× κjo+(ko,ko+k)j−2
(δon−k)

+
C

n

n∑
jo=1

n∑
j=⌈Jn⌉

L̃3,jo+j

j−2∑
k=⌈Jn⌉

[
L3,jo+(0,j)

(log(ep))5/2

δ5n−k
+ νq,jo+(0,j)

(log(ep))(q+2)/2

δq+2
n−k

]
κok.

Based on Lemma A.7,

1

n

n∑
jo=1

n∑
j=⌈Jn⌉

L̃3,jo+j

j−1∑
k=⌈Jn⌉

[
L3,(jo,jo+j)

(log(ep))5/2

δ5n−k
+ νq,(jo,jo+j)

(log(ep))(q+2)/2

δq+2
n−k

]
κok

≤ C

n3/2

n∑
jo=1

n∑
j=⌈Jn⌉

L̃3,jo+j

[
L3,(jo,jo+j)

(log(ep))7/2

σ2σminδ2n−j
+ νq,(jo,jo+j)

(log(ep))(q+4)/2

σ2σminδ
q−1
n−j

]

≤ C√
n

n∑
j=⌈Jn⌉

L3

[
L3

(log(ep))7/2

σ2σminδ2n−j
+ νq

(log(ep))(q+4)/2

σ2σminδ
q−1
n−j

]

≤ C√
n
L3

[
L3

(log(ep))7/2

σ4σmin
+ νq

(log(ep))(q+4)/2

σ4σminδq−3

]
log

(
1 +

√
nσ

δ

)
,

where the first and last inequliaties follow Eqs. (12) and (19), respectively. In sum, we obtain
the following induction lemma.
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LEMMA A.9. If Assumptions (MIN-VAR), (MIN-EV) and (VAR-EV) hold, then for any
δ ≥ σmin,

µ[1,n]

≤ C√
n

δ log(ep)

σmin
+

C√
n

√
log(ep)

ϕσmin
+

C√
n
L3

(log(ep))2

σ2σmin

+
Cϕ√
n

[
L4

(log(ep))5/2

σ2σmin
+ νq

(log(ep))(q+1)/2

σ2σmin(δ/2)q−4

]
log(en)

+
Cϕ√
n
L3

[
L3

(log(ep))7/2

σ4σmin
+ νq

(log(ep))(q+4)/2

σ4σmin(δ/2)q−3

]
log(en)

+
Cϕ

n

n∑
jo=1

n∑
j=⌈Jn⌉

[
L̃4,jo

(log(ep))3/2

δ3n−j
+ ν̃q,jo

(log(ep))(q−1)/2

(δn−j/2)q−1

]
κjo+(3,j−2)(δ

o
n−j)

+
Cϕ

n

n∑
jo=1

n−1∑
j=⌈Jn⌉

[
L̃4,jo+j

(log(ep))3/2

δ3n−j
+ ν̃q,jo+j

(log(ep))(q−1)/2

(δn−j/2)q−1

]
κjo+(1,j−4)(δ

o
n−j)

+
Cϕ

n

n∑
jo=1

n∑
j=⌈Jn⌉

L̃3,jo+j

j − 2

×
j−2∑
ko=1

j−2∑
k=⌈Jn⌉

[
L̃3,jo+[kok]j−2

(log(ep))5/2

δ5n−k
+ ν̃q,jo+[ko+k]j−2

(log(ep))(q+2)/2

(δn−k/2)q+2

]

× κjo+(ko,ko+k−3)j−2
(δon−k),

for some absolute constant C > 0.

Dual Induction. Based on Lemmas A.6 and A.9, we proceed the dual induction in the same
steps as Appendix A.1, but using Lemma A.7 as in Appendix A.3. As a result, we prove for
any n,

√
nµ[1,n] ≤ µ̃1,nL3 + µ̃2,nL

1/2
4 + µ̃3,nν

1/(q−2)
q , (HYP-BE-4)

where

µ̃1,n = C1
(log(ep))3/2

√
log(pn)

σ2σmin
log (en) ,

µ̃2,n = C2
log(ep)

√
log(pn)

σσmin
log (en)

µ̃3,n = C3
log(ep)

√
log(pn)

σ2/(q−2)σmin
log (en)

for universal constants C1, C2 and C3 whose values do not change over lines, and for any
i < n,

√
iκ[1,i](δ)≤ κ̃1,iL3,[1,i] + κ̃2,iL

1/2
4,[1,i] + κ̃3,iν

1/(q−2)
q,[1,i] + κ̃4,iν

1/2
2,[1,i] + κ̃5δ, (HYP-AC-4)
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where κ̃1,i = C1,κµ̃1,i, κ̃2,i = C2,κµ̃2,i, κ̃3,i = C3,κµ̃3,i, κ̃4,i = C4,κ
log(ep)

√
log(pi)

σmin
and κ̃5 =

C5,κ

√
log(ep)

σmin
for some universal constants C1,κ, C2,κ, C3,κ, C4,κ and C5,κ whose values do

not change over lines. This proves the desired Berry–Esseen bound.

APPENDIX B: PROOFS OF LEMMAS

B.1. Proof of Lemma 5.2. The smoothing lemma is the result of the serial application
of the following two lemmas. Lemma B.2 is a corollary of Theorem 2.1 in Chernozhukov,
Chetverikov and Koike (2020). We provide a standalone proof in Appendix B.2.

LEMMA B.1 (Lemma 1, Kuchibhotla and Rinaldo, 2020). Suppose that X is a p-
dimensional random vector, and Y ∼N(0,Σ) is a p-dimensional Gaussian random vector.
Then, for any δ > 0 and a standard Gaussian random vector Z ,

µ(X,Y )≤Cµ(X + δZ,Y + δZ) +C
δ log(ep)√

mini=1,...,pΣii
.

LEMMA B.2 (Chernozhukov, Chetverikov and Koike, 2020). Suppose that X is a p-
dimensional random vector, and Y ∼N(0,Σ) is a p-dimensional Gaussian random vector.
Then, for any ϕ > 0,

µ (X,Y )≤ sup
r∈Rd

|E[fr,ϕ(X)]−E[fr,ϕ(Y )]|+ C

ϕ

√
log(ep)

mini=1,...,pΣii
.

For any δ > 0,

µ (X,Y )≤ µ (X + δZ,Y + δZ) +C
δ log(ep)√

mini=1,...,pΣii
. (32)

Then, for any δ > 0 and ϕ > 0,

µ (X + δZ,Y + δZ)

≤C sup
r∈Rd

|E[fr,ϕ(X + δZ)]−E[fr,ϕ(Y + δZ)]|+ C

ϕ

√
log(ep)

mini=1,...,pΣii

≤C sup
r∈Rd

∣∣∣E[ρδr,ϕ(X)]−E[ρδr,ϕ(Y )]
∣∣∣+ C

ϕ

√
log(ep)

mini=1,...,pΣii
.

In sum,

µ(X,Y )≤C sup
r∈Rd

∣∣∣E[ρδr,ϕ(X)]−E[ρδr,ϕ(Y )]
∣∣∣+C

δ log(ep) +
√

log(ep)/ϕ√
mini=1,...,pΣii

.

B.2. Proof of Lemma B.2. By Lemma B.1,

P[X ∈Ar]≤ E[fr,ϕ(X)] = E[fr,ϕ(Y )] +E[fr,ϕ(X)]−E[fr,ϕ(Y )]

≤ P[Y ∈Ar+ 1

ϕ
1] +E[fr,ϕ(X)]−E[fr,ϕ(Y )]

≤ P[Y ∈Ar] +
C

ϕ

√
log(ep)

mini=1,...,pΣii
,
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and similarly,

P[Y ∈Ar]≤ P[Y ∈Ar− 1

ϕ
1] +

C

ϕ

√
log(ep)

mini=1,...,pΣii

≤ E[fr− 1

ϕ
1,ϕ(Y )] +

C

ϕ

√
log(ep)

mini=1,...,pΣii

≤ E[fr− 1

ϕ
1,ϕ(X)] +E[fr− 1

ϕ
1,ϕ(Y )]−E[fr− 1

ϕ
1,ϕ(X)] +

C

ϕ

√
log(ep)

mini=1,...,pΣii

≤ P[X ∈Ar] +E[fr− 1

ϕ
1,ϕ(Y )]−E[fr− 1

ϕ
1,ϕ(X)] +

C

ϕ

√
log(ep)

mini=1,...,pΣii
.

Hence,

sup
r∈Rp

|P[X ∈Ar]− P[Y ∈Ar]| ≤ sup
r∈Rp

|E[fr,ϕ(X)]−E[fr,ϕ(Y )]|+ C

ϕ

√
log(ep)

mini=1,...,pΣii
.

B.3. Proof of Remainder Lemmas. We observe that all remainder terms are in forms
of

1

(β − 1)!

∫ 1

0
(1− t)β−1E

[〈
∇αρδr,ϕ(XJ1

+W⊥̸⊥ + YJ2
+ tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉]
dt,

where 1≤ β ≤ α and J1, J2 and J are subsets of Zn satisfying XJ1
, YJ2

and W{j1,...,jα−β}∪J
are mutually independent. We also note that XJ1

∪ YJ2
∪ {W⊥̸⊥} is independent from

W{j1,...,jα−β}. Here we prove a succinct form of the remainder lemmas:

LEMMA B.3. Suppose that Var[YJ2
|YJC

2
]⪰ σ2J2

Ip for some σ2J2
> 0 and p-dimensional

identity matrix Ip. Then, for any γ1, γ2 ∈ [0,1] and η > 0, remainder terms in the above form
satisfy∣∣∣∣∫ 1

0
(1− t)β−1E

[〈
∇αρδr,ϕ(XJ1

+W⊥̸⊥ + YJ2
+ tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉]
dt

∣∣∣∣
≤C

[
(log(ep))α/2

δ′α
min{1, κJ1

(δo) + κo}
]

×


ϕγ1δ′γ1

(log(ep))γ1/2

∥∥∥E[∣∣∣(⊗α−β
k=1Wjk)⊗W⊗β

J

∣∣∣]∥∥∥
∞

+
ϕγ2δ′γ2−η

(log(ep))(γ2−η)/2
E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞(∥WJ∥η∞ + ∥W⊥̸⊥∥η∞)

]
 ,

where
∣∣∣(⊗α−β

k=1Wjk)⊗W⊗β
J

∣∣∣ is the element-wise absolute operation, δ′ ≡
√
δ2 + σ2J2

, δo ≡

12δ′
√

log(p|J1|), and κo ≡ δ′ log(ep)

σmin

√
|J1|

as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) .

We prove the above generalized remainder lemma here. Because Var[YJ2
|YJC

2
]⪰ σ2J2

Ip,

YJ2
|YJC

2

d
= Y o

J2
+ σJ2

·Z, almost surely,
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where Y o
J2

is the Gaussian random variable with mean E[YJ2
|YJC

2
] and variance Var[YJ2

|YJC
2
]−

σ2J2
Ip. For brevity, let W o ≡XJ1

+ Y o
J2

. Because δ′ =
√
δ2 + σ2J2

, the remainder term is de-
composed into∫ 1

0
(1− t)β−1E

[〈
∇αρδr,ϕ(XJ1

+W⊥̸⊥ + YJ2
+ tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉]
dt

=

∫ 1

0
(1− t)β−1E

[〈
∇αρδ

′

r,ϕ(W
o +W⊥̸⊥ + tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉]
dt

=

∫ 1

0
(1− t)β−1E

[〈
∇αρδ

′

r,ϕ(W
o +W⊥̸⊥ + tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉
IWJ ,1

]
dt

+

∫ 1

0
(1− t)β−1E

[〈
∇α−1ρδ

′

r,ϕ(W
o +W⊥̸⊥ + tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉
IWJ ,2

]
dt

=:

∫ 1

0
(1− t)β−1TWJ ,1(t)dt+

∫ 1

0
(1− t)β−1TWJ ,2(t)dt,

where

IWJ ,1 = I{∥WJ∥∞ and ∥W⊥̸⊥∥∞<
δ′√

log(ep)
},

IWJ ,2 = I{∥WJ∥∞ or ∥W⊥̸⊥∥∞≥ δ′√
log(ep)

}.

We upper-bound the terms TWJ ,1(t) and TWJ ,2(t) separately. First,

|TWJ ,1(t)|

=
∣∣∣E[〈∇αρδ

′

r,ϕ(W
o +W⊥̸⊥ + tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉
IWJ ,1

]∣∣∣
=

∣∣∣∣∣∣E
 ∑
i1,...,iα

∇(i1,...,iα)ρδ
′

r,ϕ(W
o +W⊥̸⊥ + tWJ) ·

∏
k≤α−β

W
(ik)
jk

∏
k>α−β

W
(ik)
J · IWJ ,1

∣∣∣∣∣∣
≤ E

 ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o + z)

∣∣∣ ·
∣∣∣∣∣∣
∏

k≤α−β
W

(ik)
jk

∏
k>α−β

W
(ik)
J

∣∣∣∣∣∣ · IWJ ,1


≤
∑
i1,...,iα

E

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o + z)

∣∣∣ ·
∣∣∣∣∣∣
∏

k≤α−β
W

(ik)
jk

∏
k>α−β

W
(ik)
J

∣∣∣∣∣∣ · IWJ ,1


=
∑
i1,...,iα

E
[
sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o + z)

∣∣∣]E
∣∣∣∣∣∣

∏
k≤α−β

W
(ik)
jk

∏
k>α−β

W
(ik)
J

∣∣∣∣∣∣ · IWJ ,1


≤ E

 ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o
j + z)

∣∣∣
∥∥∥E[∣∣∣(⊗α−β

k=1Wjk)⊗W⊗β
J

∣∣∣]∥∥∥
∞
,

(33)

where B = {z : ∥z∥∞ ≤ 2δ′√
log(ep)

}, and
∣∣∣(⊗α−β

k=1Wjk)⊗W⊗β
J

∣∣∣ is the element-wise absolute

operation. The fifth equality follows the independence between W o and W{j1,...,jα−β}∪J . We
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decompose the expectation term on the last line by

E

 ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o
j + z)

∣∣∣


≤ E
[ ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o
j + z)

∣∣∣ · IW o,1

]
+E

[ ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o
j + z)

∣∣∣ · IW o,2

]
,

(34)

where the value of h > 0 will be determined later, and

IW o,1 = I{∥W o−∂Ar∥∞≤12δ′
√

log(ph)
},

IW o,2 = I{∥W o−∂Ar∥∞>12δ′
√

log(ph)
}.

For the first term, based on Lemmas 6.1 and 6.2 of CCK20,

E
[ ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o + z)

∣∣∣ · IW o,1

]
≤ sup
w∈Rp

∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(w+ z)
∣∣∣ ·E [IW o,1]

≤C
ϕγ1(log(ep))(α−γ1)/2

δ′α−γ1
P
[
∥XJ1

− ∂Ar−Y o
J2
∥∞ ≤ 12δ′

√
log(ph)

]
≤C

ϕγ1(log(ep))(α−γ1)/2

δ′α−γ1
min

{
1, κJ1

(
12δ′

√
log(ph)

)}
,

for any γ1 ∈ [0,1]. For the last term, based on Lemma 10.5 of Lopes (2022),

E
[ ∑
i1,...,iα

sup
z∈B

∣∣∣∇(i1,...,iα)ρδ
′

r,ϕ(W
o + z)

∣∣∣ · IW o,2

]
≤C

1

δ′αh
.

Plugging the last two results in Eqs. (33) and (34), the resulting upper bound for TWJ ,1(t) is

|TWJ ,1(t)| ≤C

[
ϕγ1(log(ep))(α−γ1)/2

δ′α−γ1
min

{
1, κJ1

(
12δ′

√
log(ph)

)}
+

1

δ′αh

]
×
∥∥∥E[∣∣∣(⊗α−β

k=1Wjk)⊗W⊗β
J

∣∣∣]∥∥∥
∞
,

for any t ∈ [0,1], γ1 ∈ [0,1] and h > 0. Replacing the minimum with 1 and minimizing over
h > 0, we get

|TWJ ,1(t)| ≤C
ϕγ1(log(ep))(α−γ1)/2

δ′α−γ1

∥∥∥E[∣∣∣(⊗α−β
k=1Wjk)⊗W⊗β

J

∣∣∣]∥∥∥
∞
.

Moreover, plugging-in

h=
σmin

ϕγ1δ′1+γ1

√
|J1|

(log(ep))α−γ1+2
,

we obtain

|TWJ ,1(t)| ≤C
ϕγ1(log(ep))(α−γ1)/2

δ′α−γ1

∥∥∥E[∣∣∣(⊗α−β
k=1Wjk)⊗W⊗β

J

∣∣∣]∥∥∥
∞
(κJ1

(δo) + κo),
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where δo = 12δ′
√

log(p|J1|) and κo = δ′ log(ep)

σmin

√
|J1|

. In sum,

|TWJ ,1(t)|

≤C
ϕγ1(log(ep))(α−γ1)/2

δ′α−γ1

∥∥∥E[∣∣∣(⊗α−β
k=1Wjk)⊗W⊗β

J

∣∣∣]∥∥∥
∞
min{1, κJ1

(δo) + κo},

for any t ∈ [0,1], γ1 ∈ [0,1] as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) . Now we bound

|TWJ ,2(t)|=
∣∣∣E[〈∇αρδ

′

r,ϕ(W
o +W⊥̸⊥ + tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉
IWJ ,2

]∣∣∣.
Conditional on W⊥̸⊥ and WJ ,

E
[∥∥∥∇αρδ

′

r,ϕ

(
W o +W⊥̸⊥ + tWJ

)∥∥∥
1

∣∣∣W⊥̸⊥,WJ

]
≤ E

[∥∥∥∇αρδ
′

r,ϕ

(
W o +W⊥̸⊥ + tWJ

)∥∥∥
1
I{∥W o−∂Ar′∥∞≤10δ′

√
log(ph)}

∣∣∣W⊥̸⊥,WJ

]
+E

[∥∥∥∇αρδ
′

r,ϕ

(
W o +W⊥̸⊥ + tWJ

)∥∥∥
1
I{∥W o−∂Ar′∥∞>10δ′

√
log(ph)}

∣∣∣W⊥̸⊥,WJ

]
,

where r′ = r −W⊥̸⊥ − tWJ is deterministic given W⊥̸⊥ and WJ . Applying Lemmas 6.1, 6.2
of Chernozhukov, Chetverikov and Koike (2020) and Lemma 10.5 of Lopes (2022) to the
two terms, respectively,

E
[∥∥∥∇αρδ

′

r,ϕ

(
W o +W⊥̸⊥ + tWJ

)∥∥∥
1

∣∣∣W⊥̸⊥,WJ

]
≤C

ϕγ2(log(ep))(α−γ2)/2

δ′α−γ2
P
[
∥W o − ∂Ar′∥∞ ≤ 10δ′

√
log(ph)

∣∣∣W⊥̸⊥,WJ

]
+C

1

δ′αh

≤C
ϕγ2(log(ep))(α−γ2)/2

δ′α−γ2
min

{
1, κJ1

(
10δ′

√
log(ph)

)}
+C

1

δ′αh
,

almost surely, for any γ2 ∈ [0,1] and h > 0. Putting the last two results together,

|TWJ ,2(t)|

≤C

(
ϕγ2(log(ep))(α−γ2)/2

δ′α−γ2
min

{
1, κJ1

(
10δ′

√
log(ph)

)}
+

1

δ′αh

)

×E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞IWJ ,2

]
,

for any γ2 ∈ [0,1] and h > 0. Because IWJ ,2 = I{∥WJ∥∞ or ∥W⊥̸⊥∥∞≥ δ′√
log(ep)

} ≥ I{∥WJ∥∞>
δ′√

log(ep)
}+

I{∥W⊥̸⊥∥∞>
δ′√

log(ep)
},

E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞IWJ ,2

]

≤ E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞I{∥WJ∥∞>
δ′√

log(ep)
}

]
+E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞I{∥W⊥̸⊥∥∞>
δ′√

log(ep)
}

]

≤ (log(ep))η/2

δ′η
E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞(∥WJ∥η∞ + ∥W⊥̸⊥∥η∞)

]
,
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for any η > 0. The resulting upper bound for TWJ ,2(t) is

|TWJ ,2(t)|

≤C

[
ϕγ2(log(ep))(α−γ2)/2

δ′α−γ2
min

{
1, κJ1

(
10δ′

√
log(ph)

)}
+

1

δ′αh

]

× (log(ep))η/2

δ′η
E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞(∥WJ∥η∞ + ∥W⊥̸⊥∥η∞)

]
,

for any γ2 ∈ [0,1], η > 0 and h > 0. By similar choices of h with for TWJ ,1(t), we obtain

|TWJ ,2(t)|

≤C

[
ϕγ2(log(ep))(α−γ2+η)/2

δ′α−γ2+η
min{1, κJ1

(δo) + κo}
]

×E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞(∥WJ∥η∞ + ∥W⊥̸⊥∥η∞)

]
,

for any t ∈ [0,1] and η > 0 as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) . Putting the upperbounds for

TWJ ,1(t) and TWJ ,2(t) together, we obtain the following upper bound for the entire remainder
term:∣∣∣∣∫ 1

0
(1− t)β−1E

[〈
∇αρδr,ϕ(XJ1

+W⊥̸⊥ + YJ2
+ tWJ), (⊗α−β

k=1Wjk)⊗W⊗β
J

〉]
dt

∣∣∣∣
≤C

[
(log(ep))α/2

δ′α
min{1, κJ1

(δo) + κo}
]

×


ϕγ1δ′γ1

(log(ep))γ1/2

∥∥∥E[∣∣∣(⊗α−β
k=1Wjk)⊗W⊗β

J

∣∣∣]∥∥∥
∞

+
ϕγ2δ′γ2−η

(log(ep))(γ2−η)/2
E

[
α−β∏
k=1

∥Wjk∥∞∥WJ∥β∞(∥WJ∥η∞ + ∥W⊥̸⊥∥η∞)

]
 ,

for any γ1, γ2 ∈ [0,1] and η > 0 as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) . This proves

Lemma B.3.
Lemma B.3 implies all the remainder theorems in the main text and appendices of this

paper. For example, in Lemma 5.3, one of the third-order remainder terms in R
(3,1)
Wj

is

E
[∫ 1

0
(1− t)2

〈
∇3φεr

(
WC

[j,j] + tWj

)
,X⊗3

j

〉
dt

]
= E

[∫ 1

0
(1− t)2

〈
∇3φεr

(
X[1,j−1) +W⊥̸⊥ + Y(j+1,n] + tWj

)
,X⊗3

j

〉
dt

]
,

where WC
[i,j] ≡X[1,i) + Y(j,n] and W⊥̸⊥ ≡Xj−1 + Yj+1. Because of Assumption (MIN-EV),

Var[Y(j+1,n]|Y(j+1,n]] ⪰ σ2max{n − j − 3,0} · Ip. Let σ2j ≡ σ2max{j,0} and δ2j ≡√
δ2 + σ2j . Applying Lemma B.3 to this term with γ1 = 0 and γ2 = η = q − 3, we obtain
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for q ≥ 3,∣∣∣∣E[∫ 1

0
(1− t)2

〈
∇3φεr

(
X[1,j−1) +W⊥̸⊥ + Y(j+1,n] + tWj

)
,W⊗3

j

〉
dt

]∣∣∣∣
≤C

(log(ep))3/2

δ3n−j
min{1, κ[1,j−1)(δ

o
n−j) + κoj}

×
[∥∥∥E[∣∣∣W⊗3

j

∣∣∣]∥∥∥
∞

+ ϕq−3E
[
∥Wj∥3∞(∥Wj∥q−3

∞ + ∥Xj−1 + Yj+1∥q−3
∞ )

]]
≤C

(log(ep))3/2

δ3n−j

[
L3,j + (2ϕ)q−3(νq,j−1 + νq,j + νq,j+1)

]
min{1, κ[1,j−1)(δ

o
n−j) + κoj},

where δon−j ≡ 12δn−j
√

log(pn) and κoj ≡
δn−j log(ep)

σmin

√
max{j,1}

as long as δ ≥ σmin and ϕδ ≥
1

log(ep) . Based on similar applications of Lemma B.3 to the other terms of R(3,1)
Xj

, for q ≥ 3,

∣∣∣E[R(3,1)
Wj

]∣∣∣≤C
(log(ep))3/2

δ3n−j

 j+3∑
j′=j−3

L3,j′ + (2ϕ)q−3
j+3∑

j′=j−3

νq,j′


×min{κ[1,j−3)(δ

o
n−j) + κoj ,1},

as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) . Similar arguments and bounds apply to R

(3)
W and R

(3,2)
Wj

.

For the fourth-order remainder terms, we consider the first term of R(4,1)
Wj

:

E
[∫ 1

0
(1− t)3

〈
∇4ρδr,ϕ(W

C
[j,j] + tXj),X

⊗4
j

〉
dt

]
= E

[∫ 1

0
(1− t)3

〈
∇4ρδr,ϕ(X[1,j−1) +W⊥̸⊥ + Y(j+1,n] + tXj),X

⊗4
j

〉
dt

]
.

Applying Lemma B.3 to this term with γ1 = γ2 = 1 and η = q− 4, we obtain for q ≥ 4,∣∣∣∣E[∫ 1

0
(1− t)3

〈
∇4φεr

(
X[1,j−1) +W⊥̸⊥ + Y(j+1,n] + tWj

)
,W⊗4

j

〉
dt

]∣∣∣∣
≤Cϕmin{1, κ[1,j−1)(δ

o
n−j) + κoj}

×

[
(log(ep))3/2

δ3n−j

∥∥∥E[∣∣∣W⊗4
j

∣∣∣]∥∥∥
∞

+
(log(ep))(q−1)/2

(δn−j/2)q−1
E
[
∥Wj∥4∞(∥Wj∥q−4

∞ + ∥Xj−1 + Yj+1∥q−4
∞ )

]]

≤Cϕ

[
(log(ep))3/2

δ3n−j
L4,j +

(log(ep))(q−1)/2

(δn−j/2)q−1
(νq,j−1 + νq,j + νq,j+1)

]
min{1, κ[1,j−1)(δ

o
n−j) + κoj},

as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) . Based on similar applications of Lemma B.3 to the

other terms of R(4,1)
Xj

, for q ≥ 4,

∣∣∣E[R(4,1)
Wj

]∣∣∣≤Cϕ

(log(ep))3/2

δ3n−j

j+4∑
j′=j−4

L4,j′ +
(log(ep))(q−1)/2

(δn−j/2)q−1

j+4∑
j′=j−4

νq,j′


×min{κ[1,j−4)(δ

o
n−j) + κoj ,1},
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as long as δ ≥ σmin and ϕδ ≥ 1
log(ep) . Similar arguments and bounds apply to R

(4)
W and R

(4,2)
Wj

.

Finally, for the sixth-order remainder terms, we consider the first term of R(6,1)
Xj ,Wk

:

E
[∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k) + tXk + Y(k,j−1)∪(j+1,n)),E[X⊗3

j ]⊗W⊗3
k

〉
dt

]
= E

[∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k−1) +W⊥̸⊥ + Y(k+1,j−1)∪(j+1,n)) + tXk,E[X⊗3

j ]⊗W⊗3
k

〉
dt

]
,

where W⊥̸⊥ ≡ Xk−1 + Yk+1. Applying Lemma B.3 to this term with γ1 = γ2 = 1 and η =
q− 3, we obtain for q ≥ 4,∣∣∣∣E[∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k) + tXk + Y(k,j−1)∪(j+1,n)),E[X⊗3

j ]⊗W⊗3
k

〉
dt

]∣∣∣∣
≤Cϕmin{1, κ[1,j−1)(δ

o
n−j) + κoj}

×


(log(ep))3/2

δ3n−k

∥∥∥E[∣∣∣X⊗3
j

∣∣∣]E [∣∣W⊗3
k

∣∣]∥∥∥
∞

+
(log(ep))(q−1)/2

(δn−k/2)q−1

∥∥∥E[∣∣∣X⊗3
j

∣∣∣]∥∥∥
∞
E
[
∥Wk∥3∞(∥Wk∥q−3

∞ + ∥Xk−1 + Yk+1∥q−3
∞ )

]


≤CϕL3,j

(
L3,k

(log(ep))5/2

δ5n−k
+ (νq,k−1 + νq,k + νq,k+1)

(log(ep))(q+2)/2

(δn−k/2)q+2

)
×min{κ[1,k−1)(δ

o
n−k−5) + κok,1}.

Similarly, we get∣∣∣E[R(6,1)
Xj ,Wk

]∣∣∣≤CϕL3,j

(
k+2∑

k′=k−2

L3,k′
(log(ep))5/2

δ5n−k
+

k+3∑
k′=k−3

νq,k′
(log(ep))(q+2)/2

(δn−k/2)q+2

)
×min{κ[1,k−3)(δ

o
n−k) + κok,1}.

Similar arguments and bounds apply to the other sixth-order remainder terms.

B.4. Proof of Anti-concentration Lemma. We use a similar approach with Ap-
pendix B.3 to upper bound E

[
RX{2,i−1},1|X(i,n]

]
. First, we decompose E

[
RX{2,i−1},1|X(i,n]

]
by

E
[
RX{2,i−1},1|X(i,n]

]
= E

[∫ 1

0

〈
∇φεr,δ+εo(X[1,i] − tX{2,i−1}),X{2,i−1}

〉
dt

∣∣∣∣X(i,n]

]
= E

[∫ 1

0

〈
∇φεr,δ+εo(X[1,i] − tX{2,i−1}),X{2,i−1}

〉
I≤(t)dt

∣∣∣∣X(i,n]

]
+E

[∫ 1

0

〈
∇φεr,δ+εo(X[1,i] − tX{2,i−1}),X{2,i−1}

〉
I>(t)dt

∣∣∣∣X(i,n]

]
,
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where I≤(t) = I{∥X[1,i] − tX{2,i−1} − ∂Ar,δ+εo∥∞ ≤ εo}, I>(t) = I{∥X[1,i] − tX{2,i−1} −
∂Ar,δ+εo∥∞ > εo}. Based on Lemma 2.3 of Fang and Koike (2020),

E
[∫ 1

0

〈
∇φεr,δ+εo(X[1,i] − tX{2,i−1}),X{2,i−1}

〉
I≤(t)dt

∣∣∣∣X(i,n]

]
≤ E

[∫ 1

0
∥∇φεr,δ+εo(X[1,i] − tX{2,i−1})∥1I≤(t)∥X{2,i−1}∥∞dt

∣∣∣∣X(i,n]

]
≤C

√
log(ep)

ε
E
[∫ 1

0
I≤(t)∥X{2,i−1}∥∞dt

∣∣∣∣X(i,n]

]
We use Tonelli’s theorem to switch the order between the integration and the expectation
conditional on X(i−2,3):

E
[∫ 1

0
I≤(t)∥X{2,i−1}∥∞dt

∣∣∣∣X(i,n]

]
≤ E

[∫ 1

0
E
[
I≤(t)∥X{2,i−1}∥∞

∣∣ |X(i−2,n+3)

]
dt

∣∣∣∣X(i,n]

]

= E

[∫ 1

0

(
P[X[3,i−2] ∈Ar1,εo |X(i−2,n+3)]

+ P[X[3,i−2] ∈Ar2,εo |X(i−2,n+3)]

)
∥X{2,i−1}∥∞dt

∣∣∣∣∣X(i,n]

]
≤ κ[3,i−2](ε

o)E[∥X{2,i−1}∥∞|X(i,n]] = κ[3,i−2](ε
o)(ν1(X2) + ν1(Xi−1)),

where r1 = r− (1− t)X{2,i−1}−X1−Xi− (δ+ εo)1 and r2 = r− (1− t)X{2,i−1}−X1−
Xi+(δ+εo)1 are Borel measurable functions with respect toX(i−2,n+3). On the other hand,
based on Lemma 10.5 of Lopes (2022),

E
[∫ 1

0

〈
∇φεr,δ+εo(X[1,i] − tX{2,i−1}),X{2,i−1}

〉
I>(t)dt

∣∣∣∣X(i,n]

]
≤ E

[∫ 1

0
∥∇φεr,δ+εo(X[1,i] − tX{2,i−1})∥1I>(t)∥X{2,i−1}∥∞dt

∣∣∣∣X(i,n]

]
=

1

εh4
E
[∫ 1

0
E
[
∥X{2,i−1}∥∞

∣∣X(i−2,n+3)

]
dt

∣∣∣∣X(i,n]

]
=

1

εh4
E[∥X{2,i−1}∥∞|X(i,n]] =

1

εh4
(ν1,2 + ν1,i−1).

Putting the above result and Eq. (17) back to Eq. (16), we get for any h > 0,

P[X[1,i] ∈Ar,δ|X(i,n]]

≤ (ν1,2 + ν1,i−1)

(
C

√
log(ep)

ε
max

{
1, κ[3,i−2](ε

o)
}
+

1

εh4

)

+C
δ+ 2εo

σmin

√
log(ep)

i− 2
+ 2µ[3,i−2].
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Plugging in h=
(
σmin

ε

√
i−2

(log(ep))2

)1/4
,

P[X[1,i] ∈Ar,δ|X(i,n]]

≤C(ν1,2 + ν1,i−1)

√
log(ep)

ε
max

{
1, κ[3,i−2](ε

o) + κoi−2

}
+C

δ+ 2εo

σmin

√
log(ep)

i− 2
+ 2µ[3,i−2],

where εo = 10ε
√

log(pmax{i0 − 2,1}) and κoj =
ε

σmin

√
log(ep)

max{j,1} , as long as ε≥ σmin. Be-
cause the righthand side is not dependent on r, for any ε≥ σmin, δ > 0,

κ[1,i](δ)

≤C

(
(ν1,2 + ν1,i−1)

√
log(ep)

ε
κ[3,i−2](ε

o) + µ[3,i−2]

)

+C
δ+ 2εo

σmin

√
log(ep)

i− 2
+C

ν1,(1,i)

σmin

log(ep)√
i− 2

.

B.5. Proof of Lemma A.7. Suppose that j, k ≥ n
2 and α ≤ 1. Because x 7→ xα is con-

cave, by Jensen’s inequality, for any q1, q2 > 0,

1

n

n∑
i=1

Lq1,i+jL
α
q2,(i,i+j) ≤ Lq1

(
1
n

∑n
i=1Lq1,i+jLq2,(i,i+j)

Lq1

)α

≤ Lq1

(
1

n(j−1)

∑n
i=1Lq1,i

∑n
i=1Lq2,i

Lq1

)α

≤ Lq1

(
n

j − 1
Lq2

)α
≤ 2αLq1Lq2 .

Similarly, for any q1, q2, q3 > 0,

1

n

n∑
i=1

Lq1,i+j
j − 1

j−1∑
l=1

Lq2,i+[k+l]j−1
L
α
q3,i+(l,k+l)j−1

≤ 1

n

n∑
i=1

Lq1,i+j
j − 1

j−1∑
l=1

Lq2,i+[k+l]j−1

(
1
n

∑n
i=1

Lq1,i+j

j−1

∑j−1
l=1 Lq2,i+[k+l]j−1

Lq3,i+(l,k+l)j−1

1
n

∑n
i=1

Lq1,i+j

j−1

∑j−1
l=1 Lq2,i+[k+l]j−1

)α

≤ 1

n

n∑
i=1

Lq1,i+jLq2,(i,i+j)

(
1
j−1

∑n
i=1

Lq1,i+j

j−1

∑j−1
l=1 Lq2,i+[k+l]j−1

Lq3
1
n

∑n
i=1

Lq1,i+j

j−1

∑j−1
l=1 Lq2,i+[k+l]j−1

)α

≤ 1

n

n∑
i=1

Lq1,i+jLq2,(i,i+j)

(
n

j − 1
Lq3

)α

≤ 2α

n

n∑
i=1

Lq1,i+jLq2,(i,i+j)L
α
q3

≤ 2α+1Lq1Lq2

j−1∑
l=1

Lq2,i+[k+l]j−1
L
α
q3 .
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APPENDIX C: DETAILS OF THE TAYLOR EXPANSIONS FOR m= 1

C.1. Breaking the ring. We apply the Taylor expansion to ρδr,ϕ(X[1,n]) centered at
ρδr,ϕ(X[1,n)) as follows:

ρδr,ϕ(X[1,n])− ρδr,ϕ(X[1,n))

=
〈
∇ρδr,ϕ(X[1,n)),Xn

〉
+

1

2

〈
∇2ρδr,ϕ(X[1,n)),X

⊗2
n

〉
+

1

2

∫ 1

0
(1− t)2

〈
∇3ρδr,ϕ(X[1,n) + tXn),X

⊗3
n

〉
dt.

Because X[1,n) and Xn are dependent via X1 and Xn−1 due to 1-dependency, we re-apply
the Taylor expansion to ∇ρδr,ϕ(X[1,n)) and ∇2ρδr,ϕ(X[1,n)) centered at X(1,n−1):〈

∇ρδr,ϕ(X[1,n)),Xn

〉
=
〈
∇ρδr,ϕ(X(1,n−1)),Xn

〉
+
〈
∇2ρδr,ϕ(X(1,n−1)),Xn ⊗ (X1 +Xn−1)

〉
+

∫ 1

0
(1− t)

〈
∇3ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),Xn ⊗ (X1 +Xn−1)

⊗2
〉
dt, and

〈
∇2ρδr,ϕ(X[1,n)),X

⊗2
n

〉
=
〈
∇2ρδr,ϕ(X(1,n−1)),X

⊗2
n

〉
+

∫ 1

0

〈
∇3ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),X

⊗2
n ⊗ (X1 +Xn−1)

〉
dt.

Similarly, 〈
∇2ρδr,ϕ(X(1,n−1)),Xn ⊗X1

〉
=
〈
∇2ρδr,ϕ(X(2,n−1)),Xn ⊗X1

〉
+

∫ 1

0

〈
∇3ρδr,ϕ(X(2,n−1) + tX2),Xn ⊗X1 ⊗X2

〉
dt, and

〈
∇2ρδr,ϕ(X(1,n−1)),Xn ⊗Xn−1

〉
=
〈
∇2ρδr,ϕ(X(1,n−2)),Xn ⊗Xn−1

〉
+

∫ 1

0

〈
∇3ρδr,ϕ(X(1,n−2) + tX2),Xn ⊗Xn−1 ⊗Xn−2

〉
dt.

In sum, because E[Xj ] = 0,

E
[
ρδr,ϕ(X[1,n])− ρδr,ϕ(X[1,n))

]
=

1

2

〈
E[∇2ρδr,ϕ(X(1,n−1))],E[X⊗2

n ]
〉
+
〈
E[∇2ρδr,ϕ(X(2,n−1))],E[Xn ⊗X1]

〉
+
〈
E[∇2ρδr,ϕ(X(1,n−2))],E[Xn−1 ⊗Xn]

〉
+E

[
R

(3)
X

]
,
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where R
(3)
X is the summation of all the above third-order remainder terms. That is,

R
(3)
X

=
1

2

∫ 1

0
(1− t)2

〈
∇3ρδr,ϕ(X[1,n) + tXn),X

⊗3
n

〉
dt

+

∫ 1

0
(1− t)

〈
∇3ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),Xn ⊗ (X1 +Xn−1)

⊗2
〉
dt

+
1

2

∫ 1

0

〈
∇3ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),X

⊗2
n ⊗ (X1 +Xn−1)

〉
dt

+

∫ 1

0

〈
∇3ρδr,ϕ(X(2,n−1) + tX2),Xn ⊗X1 ⊗X2

〉
dt

+

∫ 1

0

〈
∇3ρδr,ϕ(X(1,n−2) + tX2),Xn ⊗Xn−1 ⊗Xn−2

〉
dt

To further decompose R
(3)
X , we apply the Taylor expansion up to order 4. For example,

1

2

∫ 1

0
(1− t)2

〈
∇3ρδr,ϕ(X[1,n) + tXn),X

⊗3
n

〉
dt

=
1

6

〈
∇3ρδr,ϕ(X[1,n)),X

⊗3
n

〉
+

1

6

∫ 1

0
(1− t)3

〈
∇4ρδr,ϕ(X[1,n) + tXn),X

⊗4
n

〉
dt.

Again, to break the dependency between ∇3ρδr,ϕ(X[1,n)) and X⊗3
n , we re-apply the Taylor

expansion centered at X1 +Xn−1.〈
∇3ρδr,ϕ(X[1,n)),X

⊗3
n

〉
=
〈
∇3ρδr,ϕ(X(1,n−1)),X

⊗3
n

〉
+

∫ 1

0

〈
∇4ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),X

⊗3
n ⊗ (X1 +Xn−1)

〉
dt.

Repeating this to the other third-order remainder terms, we get

R
(3)
X

=
1

6

〈
∇3ρδr,ϕ(X(1,n−1)),X

⊗3
n

〉
+
〈
∇3ρδr,ϕ(X(1,n−3)),Xn−2 ⊗Xn−1 ⊗Xn

〉
+
〈
∇3ρδr,ϕ(X(2,n−2)),Xn−1 ⊗Xn ⊗X1

〉
+
〈
∇3ρδr,ϕ(X(3,n−1)),Xn ⊗X1 ⊗X2

〉
+

1

2

〈
∇3ρδr,ϕ(X(1,n−2)),Xn−1 ⊗Xn ⊗ (Xn−1 +Xn)

〉
+

1

2

〈
∇3ρδr,ϕ(X(2,n−1)),Xn ⊗X1 ⊗ (X1 +Xn)

〉
+R

(4)
X ,
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where

R
(4)
X

=
1

6

∫ 1

0
(1− t)3

〈
∇4ρδr,ϕ(X[1,n) + tXn),X

⊗4
n

〉
dt

+
1

2

∫ 1

0
(1− t)2

〈
∇4ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),Xn ⊗ (X1 +Xn−1)

⊗3
〉
dt

+
1

2

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),X

⊗2
n ⊗ (X1 +Xn−1)

⊗2
〉
dt

+
1

6

∫ 1

0

〈
∇4ρδr,ϕ(X(1,n−1) + t(X1 +Xn−1)),X

⊗3
n ⊗ (X1 +Xn−1)

〉
dt

+

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ(X(2,n−1) + tX2),Xn ⊗X1 ⊗X⊗2

2

〉
dt

+

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ(X(1,n−2) + tXn−2),Xn ⊗Xn−1 ⊗X⊗2

n−2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ(X(2,n−1) + tX2),Xn ⊗X⊗2

1 ⊗X2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ(X(1,n−2) + tXn−2),Xn ⊗X⊗2

n−1 ⊗Xn−2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ(X(2,n−1) + tX2),X

⊗2
n ⊗X1 ⊗X2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ(X(1,n−2) + tXn−2),X

⊗2
n ⊗Xn−1 ⊗Xn−2

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ(X(3,n−1) + tX3),Xn ⊗X1 ⊗X2 ⊗X3

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ(X(2,n−2) + t(X2 +Xn−2)),Xn ⊗Xn−1 ⊗X1 ⊗ (X2 +Xn−2)

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ(X(1,n−3) + tXn−3),Xn ⊗Xn−1 ⊗Xn−2 ⊗Xn−3

〉
dt.

The third-order moments in Eq. (31) are further decomposed as in Appendix C.4. As a result,〈
E
[
∇3ρδr,ϕ(X(1,n−1))

]
,E[X⊗3

n ]
〉

=
〈
E
[
∇3ρδr,ϕ(Y(1,n−1))

]
,E[X⊗3

n ]
〉
+

n−2∑
k=2

E
[
R

(6,1)
X,Xk

−R
(6,1)
X,Yk

]
,

〈
E
[
∇3ρδr,ϕ(X(1,n−3))

]
,E[Xn−2 ⊗Xn−1 ⊗Xn]

〉
=
〈
E
[
∇3ρδr,ϕ(Y(1,n−3))

]
,E[Xn−2 ⊗Xn−1 ⊗Xn]

〉
+

n−4∑
k=2

E
[
R

(6,2)
X,Xk

−R
(6,2)
X,Yk

]
,
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E
[
∇3ρδr,ϕ(X(2,n−2))

]
,E[Xn−1 ⊗Xn ⊗X1]

〉
=
〈
E
[
∇3ρδr,ϕ(Y(2,n−2))

]
,E[Xn−1 ⊗Xn ⊗X1]

〉
+

n−3∑
k=3

E
[
R

(6,3)
X,Xk

−R
(6,3)
X,Yk

]
,

〈
E
[
∇3ρδr,ϕ(X(3,n−1))

]
,E[Xn ⊗X1 ⊗X2]

〉
=
〈
E
[
∇3ρδr,ϕ(Y(3,n−1))

]
,E[Xn ⊗X1 ⊗X2]

〉
+

n−2∑
k=4

E
[
R

(6,4)
X,Xk

−R
(6,4)
X,Yk

]
,

〈
E
[
∇3ρδr,ϕ(X(1,n−2))

]
,E[Xn−1 ⊗Xn ⊗ (Xn−1 +Xn)]

〉
=
〈
E
[
∇3ρδr,ϕ(Y(1,n−2))

]
,E[Xn−1 ⊗Xn ⊗ (Xn−1 +Xn)]

〉
+

n−3∑
k=2

E
[
R

(6,5)
X,Xk

−R
(6,5)
X,Yk

]
, and

〈
E
[
∇3ρδr,ϕ(X(2,n−1))

]
,E[Xn ⊗X1 ⊗ (Xn−1 +Xn)]

〉
=
〈
E
[
∇3ρδr,ϕ(Y(2,n−1))

]
,E[Xn ⊗X1 ⊗ (X1 +Xn)]

〉
+

n−2∑
k=3

E
[
R

(6,6)
X,Xk

−R
(6,6)
X,Yk

]
.

Because Y is Gaussian, by Lemma 6.2 in Chernozhukov, Chetverikov and Koike (2020) and
Assumption (VAR-EV),∣∣〈E [∇3ρεr,ϕ(Y(1,n−1))

]
,E[X⊗3

n ]
〉∣∣≤ C

n3/2
L3,n

(log(ep))3/2

σ3

≤ C

n3/2
L3,n

(log(ep))2

σ2σmin
.

Putting all the terms together,∣∣∣R(3)
X −R

(3)
Y

∣∣∣≤ C√
n
L3

(log(ep))2

σ2σmin
+
∣∣∣R(4)

X −R
(4)
Y

∣∣∣+ n−2∑
k=2

∣∣∣E[R(6)
X,Xk

−R
(6)
X,Yk

]∣∣∣,
where R

(6)
X,Wk

= 1
6R

(6,1)
X,Wk

+R
(6,2)
X,Wk

+R
(6,3)
X,Wk

+R
(6,4)
X,Wk

+ 1
2R

(6,5)
X,Wk

+ 1
2R

(6,6)
X,Wk

.

C.2. First Lindeberg swapping under 1-dependence. We apply Taylor’s expansion to
each term with φεr of the Lindeberg swapping in Eq. (11). We only show the expansions for
j = 3, . . . , n− 2 here, but the calculations for j = 1,2, n− 1 and n are similar. We recall the
notations

WC
[i,j] ≡X[1,i) + Y(j,n] and W⊥⊥

[i,j] ≡WC
[i−1,j+1].

First,

φεr(W
C
[j,j] +Xj)

= φεr(W
C
[j,j]) +

〈
∇φεr(WC

[j,j]),Xj

〉
+

1

2

〈
∇2φεr(W

C
[j,j]),X

⊗2
j

〉
+

1

2

∫ 1

0
(1− t)2

〈
∇3φεr(W

C
[j,j] + tXj),X

⊗3
j

〉
dt.
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We further apply Taylor’s expansion to the second and third terms:〈
∇φεr(WC

[j,j]),Xj

〉
=
〈
∇φεr(W⊥⊥

[j,j]),Xj

〉
+
〈
∇2φεr(W

⊥⊥
[j,j]),Xj ⊗ (Xj−1 + Yj+1)

〉
+

∫ 1

0
(1− t)

〈
∇3φεr

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,Xj ⊗ (Xj−1 + Yj+1)

⊗2
〉
dt,

〈
∇2φεr(W

C
[j,j]),X

⊗2
j

〉
=
〈
∇2φεr(W

⊥⊥
[j,j]),X

⊗2
j

〉
+

∫ 1

0
(1− t)

〈
∇3φεr

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,X⊗2

j ⊗ (Xj−1 + Yj+1)
〉
dt.

Last, 〈
∇2φεr(W

⊥⊥
[j,j]),Xj ⊗ (Xj−1 + Yj+1)

〉
=
〈
∇2φεr(W

⊥⊥
[j,j]),Xj ⊗Xj−1

〉
+
〈
∇2φεr(W

⊥⊥
[j,j]),Xj ⊗ Yj+1

〉
=
〈
∇2φεr(W

⊥⊥
[j−1,j]),Xj ⊗Xj−1

〉
+
〈
∇2φεr(W

⊥⊥
[j,j+1]),Xj ⊗ Yj+1

〉
+

∫ 1

0

〈
∇3φεr

(
W⊥⊥

[j−1,j] + tXj−2

)
,Xj ⊗Xj−1 ⊗Xj−2

〉
dt

+

∫ 1

0

〈
∇3φεr

(
W⊥⊥

[j,j+1] + tYj+2

)
,Xj ⊗ Yj+1 ⊗ Yj+2)

〉
dt.

In sum,

E
[
φεr(W

C
[j,j] +Xj)

]

= E

φεr(WC
[j,j]) +

〈
∇φεr(W⊥⊥

[j,j]),Xj

〉
+

1

2

〈
∇2φεr(W

⊥⊥
[j,j]),X

⊗2
j

〉
+
〈
∇2φεr(W

⊥⊥
[j−1,j]),Xj ⊗Xj−1

〉
+
〈
∇2φεr(W

⊥⊥
[j,j+1]),Xj ⊗ Yj+1

〉
+R

(3,1)
Xj


= E

[
φεr(W

C
[j,j])

]
+
〈
E
[
∇φεr(W⊥⊥

[j,j])
]
,E [Xj ]

〉
+

1

2

〈
E
[
∇2φεr(W

⊥⊥
[j,j])

]
,E
[
X⊗2
j

]〉
+
〈
E
[
∇2φεr(W

⊥⊥
[j−1,j])

]
,E [Xj ⊗Xj−1]

〉
+E[R(3,1)

Xj
],
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where

R
(3,1)
Xj

=
1

2

∫ 1

0
(1− t)2

〈
∇3φεr

(
WC

[j,j] + tXj

)
,X⊗3

j

〉
dt

+

∫ 1

0
(1− t)

〈
∇3φεr

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,Xj ⊗ (Xj−1 + Yj+1)

⊗2
〉
dt

+

∫ 1

0
(1− t)

〈
∇3φεr

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,X⊗2

j ⊗ (Xj−1 + Yj+1)
〉
dt

+

∫ 1

0

〈
∇3φεr

(
W⊥⊥

[j−1,j] + tXj−2

)
,Xj ⊗Xj−1 ⊗Xj−2

〉
dt

+

∫ 1

0

〈
∇3φεr

(
W⊥⊥

[j,j+1] + tYj+2

)
,Xj ⊗ Yj+1 ⊗ Yj+2)

〉
dt.

R
(3,1)
Yj

is similarly derived. For j = 1,2, n− 1 and n, R(3,1)
Wj

is the same as Eq. (35) but with
zero in place of non-existing terms. Summing over j = 1, . . . , n,

n∑
j=1

E
[
ρδr,ϕ(W

C
[j,j] +Xj)− ρδr,ϕ(W

C
[j,j] + Yj)

]
=

n∑
j=1

E
[
R

(3,1)
Xj

]
To further decompose R

(3,1)
Xj

, we apply the Taylor expansion up to order 4. For example,
where j = 4, . . . , n− 3,

1

2

∫ 1

0
(1− t)2

〈
∇3φεr

(
WC

[j,j] + tXj

)
,X⊗3

j

〉
dt

=
1

6

〈
∇3ρδr,ϕ(W

C
[j,j]),X

⊗3
j

〉
+

1

6

∫ 1

0
(1− t)3

〈
∇4ρδr,ϕ(W

C
[j,j] + tXj),X

⊗4
j

〉
dt.

Again, to break the dependency between ∇3ρδr,ϕ(X[1,n)) and X⊗3
n , we re-apply the Taylor

expansion centered at X1 +Xn−1.〈
∇3ρδr,ϕ(W

C
[j,j]),X

⊗3
j

〉
=
〈
∇3ρδr,ϕ(W

⊥⊥
[j,j]),X

⊗3
j

〉
+

∫ 1

0

〈
∇4ρδr,ϕ(W

⊥⊥
[j,j] + t(Xj−1 + Yj+1)),X

⊗3
n ⊗ (Xj−1 + Yj+1)

〉
dt.

Repeating this to the other third-order remainder terms, we get

E
[
R

(3,1)
Xj

]
=

1

6

〈
E
[
∇3ρδr,ϕ(X[1,j−1) + Y(j+1,n])

]
,E[X⊗3

j ]
〉

+
1

2

〈
E
[
∇3ρδr,ϕ(X[1,j−2) + Y(j+1,n])

]
,E[X⊗2

j−1 ⊗Xj ] +E[Xj−1 ⊗X⊗2
j ]
〉

+
〈
E
[
∇3ρδr,ϕ(X[1,j−3) + Y(j+1,n])

]
,E [Xj−2 ⊗Xj−1 ⊗Xj ]

〉
+E

[
R

(4,1)
Xj

]
,
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where

R
(4,1)
Xj

=
1

6

∫ 1

0
(1− t)3

〈
∇4ρδr,ϕ(W

C
[j,j] + tXj),X

⊗4
j

〉
dt

+
1

2

∫ 1

0
(1− t)2

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,Xj ⊗ (Xj−1 + Yj+1)

⊗3
〉
dt

+
1

2

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,X⊗2

j ⊗ (Xj−1 + Yj+1)
⊗2
〉
dt

+
1

6

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j] + t(Xj−1 + Yj+1)
)
,X⊗3

j ⊗ (Xj−1 + Yj+1)
〉
dt

+

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ

(
W⊥⊥

[j−1,j] + tXj−2

)
,Xj ⊗Xj−1 ⊗X⊗2

j−2

〉
dt

+

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j+1] + tYj+2

)
,Xj ⊗ Yj+1 ⊗ Y ⊗2

j+2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j−1,j] + tXj−2

)
,Xj ⊗X⊗2

j−1 ⊗Xj−2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j+1] + tYj+2

)
,Xj ⊗ Y ⊗2

j+1 ⊗ Yj+2

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j−1,j+1] + t(Xj−2 + Yj+2)
)
,Xj−1 ⊗Xj ⊗ Yj+1 ⊗Xj−2

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j−1,j+1] + t(Xj−2 + Yj+2)
)
,Xj−1 ⊗Xj ⊗ Yj+1 ⊗ Yj+2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j−1,j] + tXj−2

)
,X⊗2

j ⊗Xj−1 ⊗Xj−2

〉
dt

+
1

2

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j+1] + tYj+2

)
,X⊗2

j ⊗ Yj+1 ⊗ Yj+2

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j−2,j] + tXj−3

)
,Xj ⊗Xj−1 ⊗Xj−2 ⊗Xj−3

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ

(
W⊥⊥

[j,j+2] + tYj+3

)
,Xj ⊗ Yj+1 ⊗ Yj+2 ⊗ Yj+3

〉
dt.

(35)
R

(4,1)
Yj

is similarly derived. For j = 1,2,3, n− 2, n− 1 and n, R(4,1)
Wj

is the same as Eq. (35)
but with zero in place of proper terms.

C.3. Second Lindeberg swapping. For each j = 2, . . . , n− 2,〈
∇2ρδr,ϕ

(
X(1,j) +Xj + Y(j,n−1)

)
,X⊗2

n

〉
=
〈
∇2ρδr,ϕ

(
X(1,j) + Y(j,n−1)

)
,X⊗2

n

〉
+R

(3,2,1)
Xj
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where R
(3,2,1)
Xj

=
∫ 1
0 ⟨∇

3ρδr,ϕ
(
X(1,j) + tXj + Y(j,n−1)

)
,X⊗2

n ⊗Xj⟩ dt. Furthermore,

R
(3,2,1)
Xj

=
〈
∇3ρδr,ϕ

(
X(1,j) + Y(j,n−1)

)
,X⊗2

n ⊗Xj

〉
+

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ

(
X(1,j) + tXj + Y(j,n−1)

)
,X⊗2

n ⊗X⊗2
j

〉
dt

=
〈
∇3ρδr,ϕ

(
X(1,j−1) + Y(j+1,n−1)

)
,X⊗2

n ⊗Xj

〉
+

∫ 1

0
(1− t)

〈
∇4ρδr,ϕ

(
X(1,j) + tXj + Y(j,n−1)

)
,X⊗2

n ⊗X⊗2
j

〉
dt

+

∫ 1

0

〈
∇4ρδr,ϕ

(
X(1,j−1) + t(Xj−1 + Yj+1) + Y(j+1,n−1)

)
,X⊗2

n ⊗Xj ⊗ (Xj−1 + Yj+1)
〉
dt.

Because E[X⊗2
n ⊗Xj ] = E[X⊗2

n ⊗ Yj ] = 0,〈
E
[
∇2ρδr,ϕ(X(1,n−1))

]
,E
[
X⊗2
n

]〉
−
〈
E
[
∇2ρδr,ϕ(Y(1,n−1))

]
,E
[
X⊗2
n

]〉
=

n−2∑
j=2

E
[
R

(3,2,1)
Xj

−R
(3,2,1)
Yj

]
=

n−2∑
j=2

E
[
R

(4,2,1)
Xj

−R
(4,2,1)
Yj

]
,

where R
(4,2,1)
Xj

is the fourth-order remainder term above. Similarly,〈
E
[
∇2ρδr,ϕ(X(2,n−1))

]
,E [Xn ⊗X1]

〉
−
〈
E
[
∇2ρδr,ϕ(Y(2,n−1))

]
,E [Xn ⊗X1]

〉
=

n−2∑
j=3

E
[
R

(3,2,2)
Xj

−R
(3,2,2)
Yj

]
=

n−2∑
j=3

E
[
R

(4,2,2)
Xj

−R
(4,2,2)
Yj

]
, and

〈
E
[
∇2ρδr,ϕ(X(1,n−2))

]
,E [Xn ⊗Xn−1]

〉
−
〈
E
[
∇2ρδr,ϕ(Y(1,n−2))

]
,E [Xn ⊗Xn−1]

〉
=

n−3∑
j=2

E
[
R

(3,2,3)
Xj

−R
(3,2,3)
Yj

]
=

n−3∑
j=2

E
[
R

(4,2,3)
Xj

−R
(4,2,3)
Yj

]
.

We define R(3,2)
Wj

= 1
2R

(3,2,1)
Wj

+R
(3,2,2)
Wj

+R
(3,2,3)
Wj

and R
(4,2)
Wj

= 1
2R

(4,2,1)
Wj

+R
(4,2,2)
Wj

+R
(4,2,3)
Wj

.

C.4. Third Lindeberg swapping. For j = 3, . . . , n− 1,〈
E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))

]
−E

[
∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉
.

=

j−2∑
k=1

〈
E
[
∇3ρεr,ϕ(X[1,k) +Xk + Y(k,j−1)∪(j+1,n))

]
−E
[
∇3ρεr,ϕ(X[1,k) + Yk + Y(k,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉
.
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We first consider the case with 6 ≤ j ≤ n − 1. For 3 ≤ k ≤ j − 4, the Taylor expansion
centered at X[1,k) + Y(k,j−1)∪(j+1,n) implies〈

E
[
∇3ρεr,ϕ(X[1,k) +Xk + Y(k,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉

=
〈
E[∇3ρεr,ϕ(X[1,k) + Y(k,j−1)∪(j+1,n))],E[X⊗3

j ]
〉

+E
[〈

∇4ρεr,ϕ(X[1,k) + Y(k,j−1)∪(j+1,n)),E[X⊗3
j ]⊗Xk

〉]
+

1

2
E
[〈

∇5ρεr,ϕ(X[1,k) + Y(k,j−1)∪(j+1,n)),E[X⊗3
j ]⊗X⊗2

k

〉]
+

1

2
E
[∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k) + tXk + Y(k,j−1)∪(j+1,n)),E[X⊗3

j ]⊗X⊗3
k

〉
dt

]
.

For the inner product terms with dependent factors, we repeat the Taylor expansion:

1.

E
[〈

∇4ρεr,ϕ(X[1,k) + Y(k,j−1)∪(j+1,n)),E[X⊗3
j ]⊗Xk

〉]
= E

[〈
∇5ρεr,ϕ(X[1,k−1) + Y(k+1,j−1)∪(j+1,n)),E[X⊗3

j ]⊗Xk ⊗ (Xk−1 + Yk+1)
〉]

+E
[∫ 1

0
(1− t)

〈
∇6ρεr,ϕ(X[1,k−1) + t(Xk−1 + Yk+1) + Y(k+1,j−1)∪(j+1,n)),

E[X⊗3
j ]⊗Xk ⊗ (Xk−1 + Yk+1)

⊗2
〉
dt
]
,

2.

E
[〈

∇5ρεr,ϕ(X[1,k) + Y(k,j−1)∪(j+1,n)),E[X⊗3
j ]⊗X⊗2

k

〉]
=
〈
E
[
∇5ρεr,ϕ(X[1,k−1) + Y(k+1,j−1)∪(j+1,n))

]
,E[X⊗3

j ]⊗E
[
X⊗2
k

]〉
+E

[∫ 1

0

〈
∇6ρεr,ϕ(X[1,k−1) + t(Xk−1 + Yk+1) + Y(k+1,j−1)∪(j+1,n)),

E[X⊗3
j ]⊗X⊗2

k ⊗ (Xk−1 + Yk+1)
〉
dt
]
,

3.

E
[〈

∇5ρεr,ϕ(X[1,k−1) + Y(k+1,j−1)∪(j+1,n)),E[X⊗3
j ]⊗Xk ⊗ (Xk−1 + Yk−1)

〉]
=
〈
E[∇5ρεr,ϕ(X[1,k−2) + Y(k+1,j−1)∪(j+1,n))],E[X⊗3

j ]⊗E[Xk ⊗Xk−1]
〉

+E
[∫ 1

0

〈
∇6ρεr,ϕ(X[1,k−2) + tXk−2 + Y(k+1,j−1)∪(j+1,n)),E[X⊗3

j ]⊗Xk ⊗Xk−1 ⊗Xk−2

〉
dt
]

+E
[∫ 1

0

〈
∇6ρεr,ϕ(X[1,k−1) + tYk+2 + Y(k+2,j−1)∪(j+1,n)),E[X⊗3

j ]⊗Xk ⊗ Yk+1 ⊗ Yk+2

〉
dt
]
.
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For
〈
E
[
∇3ρεr,ϕ(X[1,k) + Yk + Y(k,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉

, the calculation is the same but
with Yk in place of Xk. By the second moment matching,〈

E
[
∇3ρεr,ϕ(X[1,k) +Xk + Y(k,j−1)∪(j+1,n))

]
−E
[
∇3ρεr,ϕ(X[1,k) + Yk + Y(k,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉

=
〈
E[∇5ρεr,ϕ(X[1,k−2) + Y(k+1,j−1)∪(j+1,n))],E[X⊗3

j ]⊗E[Xk ⊗Xk−1]
〉

−
〈
E[∇5ρεr,ϕ(X[1,k−1) + Y(k+2,j−1)∪(j+1,n))],E[X⊗3

j ]⊗E[Yk ⊗ Yk+1]
〉

+E
[
R

(6,1)
Xj ,Xk

−R
(6,1)
Xj ,Yk

]
,

where for Wk =Xk or Yk,

R
(6,1)
Xj ,Wk

=
1

2

∫ 1

0
(1− t)2

〈
∇6ρεr,ϕ(X[1,k) + tWk + Y(k,j−1)∪(j+1,n)),X

⊗3
j ⊗W⊗3

k

〉
dt

+

∫ 1

0
(1− t)

〈
∇6ρεr,ϕ(X[1,k−1) + t(Xk−1 + Yk+1) + Y(k+1,j−1)∪(j+1,n)),

X⊗3
j ⊗Wk ⊗ (Xk−1 + Yk+1)

⊗2
〉
dt

+
1

2

∫ 1

0

〈
∇6ρεr,ϕ(X[1,k−1) + t(Xk−1 + Yk+1) + Y(k+1,j−1)∪(j+1,n)),

X⊗3
j ⊗W⊗2

k ⊗ (Xk−1 + Yk+1)
〉
dt

+

∫ 1

0

〈
∇6ρεr,ϕ(X[1,k−2) + tXk−2 + Y(k+1,j−1)∪(j+1,n)),X

⊗3
j ⊗Wk ⊗Xk−1 ⊗Xk−2

〉
dt

+

∫ 1

0

〈
∇6ρεr,ϕ(X[1,k−1) + tYk+2 + Y(k+2,j−1)∪(j+1,n)),X

⊗3
j ⊗Wk ⊗ Yk+1 ⊗ Yk+2

〉
dt.

(36)
For k = 1,〈

E
[
∇3ρεr,ϕ(X1 + Y(1,j−1)∪(j+1,n))

]
−E

[
∇3ρεr,ϕ(Y1 + Y(1,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉

=−
〈
E[∇5ρεr,ϕ(Y(3,j−1)∪(j+1,n))],E[X⊗3

j ]⊗E[Y1 ⊗ Y2]
〉

+E
[
R

(6,1)
Xj ,X1

−R
(6,1)
Xj ,Y1

]
,
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where R
(6,1)
Xj ,W1

is the same as Eq. (36) but with Yn and Yn−1 in place of Xk−1 and Xk−2,
respectively. For k = 2,〈
E
[
∇3ρεr,ϕ(X1 +X2 + Y(2,j−1)∪(j+1,n))

]
−E

[
∇3ρεr,ϕ(X1 + Y2 + Y(2,j−1)∪(j+1,n))

]
,E[X⊗3

j ]
〉

=
〈
E[∇5ρεr,ϕ(Y(3,j−1)∪(j+1,n))],E[X⊗3

j ]⊗E[X2 ⊗X1]
〉

−
〈
E[∇5ρεr,ϕ(Y(4,j−1)∪(j+1,n))],E[X⊗3

j ]⊗E[Y2 ⊗ Y3]
〉

+E
[
R

(6,1)
Xj ,X2

−R
(6,1)
Xj ,Y2

]
,

where R
(6,1)
Xj ,W2

is the same as Eq. (36) but with Yn in place of Xk−2. For k = j − 3,〈
E
[
∇3ρεr,ϕ(X[1,j−3) +Xj−3 + Y{j−2}∪(j+1,n))

]
−E
[
∇3ρεr,ϕ(X[1,j−3) + Yj−3 + Y{j−2}∪(j+1,n))

]
,E[X⊗3

j ]
〉

=
〈
E[∇5ρεr,ϕ(X[1,j−5) + Y(j+1,n))],E[X⊗3

j ]⊗E[Xj−3 ⊗Xj−4]
〉

−
〈
E[∇5ρεr,ϕ(X[1,j−4) + Y(j+1,n))],E[X⊗3

j ]⊗E[Yj−3 ⊗ Yj−2]
〉

+E
[
R

(6,1)
Xj ,Xj−3

−R
(6,1)
Xj ,Yj−3

]
,

where R
(6,1)
Xj ,W2

is the same as Eq. (36) but with 0 in place of Yk+2. For k = j − 2,〈
E
[
∇3ρεr,ϕ(X[1,j−2) +Xj−2 + Y(j+1,n))

]
−E

[
∇3ρεr,ϕ(X[1,j−2) + Yj−2 + Y(j+1,n))

]
,E[X⊗3

j ]
〉

=
〈
E[∇5ρεr,ϕ(X[1,j−4) + Y(j+1,n))],E[X⊗3

j ]⊗E[Xj−2 ⊗Xj−3]
〉

+E
[
R

(6,1)
Xj ,Xj−2

−R
(6,1)
Xj ,Yj−2

]
,

where R
(6,1)
Xj ,W2

is the same as Eq. (36) but with 0 in place of Yk+1 and Yk+2. By the second
moment matching,〈

E
[
∇3ρεr,ϕ(X[1,j−1) + Y(j+1,n))−∇3ρεr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉

=

j−2∑
k=1

E
[
R

(6,1)
Xj ,Xk

−R
(6,1)
Xj ,Yk

]
.

This is also the same for j ∈ [1,5], where some terms in R
(6,1)
Xj ,Wk

are zero when appropriate.
In sum,

n∑
j=1

〈
E
[
∇3ρδr,ϕ(X[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉

=

n∑
j=1

〈
E
[
∇3ρδr,ϕ(Y[1,j−1) + Y(j+1,n))

]
,E[X⊗3

j ]
〉
+

n∑
j=3

j−2∑
k=1

E
[
R

(6,1)
Xj ,Xk

−R
(6,1)
Xj ,Yk

]
.
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Similarly,
n∑
j=1

〈
E
[
∇3ρδr,ϕ(X(0∨(j+2−n),j−2) + Y(j+2,n))

]
,E[X⊗2

j ⊗Xj+1] +E[Xj ⊗X⊗2
j+1]

〉

=

n∑
j=1

〈
E
[
∇3ρδr,ϕ(X(0∨(j+2−n),j−2) + Y(j+2,n))

]
,E[X⊗2

j ⊗Xj+1] +E[Xj ⊗X⊗2
j+1]

〉

+

n∑
j=4

j−3∑
k=1

E
[
R

(6,2)
Xj ,Xk

−R
(6,2)
Xj ,Yk

]
, and

n∑
j=1

〈
E
[
∇3ρδr,ϕ(X(0∨(j+3−n),j−3) + Y(j+3,n))

]
,E [Xj ⊗Xj+1 ⊗Xj+2]

〉

=

n∑
j=1

〈
E
[
∇3ρδr,ϕ(Y(0∨(j+3−n),j−3) + Y(j+3,n))

]
,E [Xj ⊗Xj+1 ⊗Xj+2]

〉

+

n∑
j=5

j−4∑
k=1

E
[
R

(6,3)
Xj ,Xk

−R
(6,3)
Xj ,Yk

]
,

where R
(6,2)
Xj ,Wk

and R
(6,3)
Xj ,Wk

are similarly derived as Eq. (36).
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