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We seek principled approaches to global ranking

Global ranking of objects is fundamental problem in daily life
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Ranking is a fundamentally unsupervised statistical problem

A principled statistical approach is provided by the Bradley-Terry (BT) Model 52’



BT-model obtains global rankings using pairwise data

Consider NN distinct teams, each with a positive “strength” score, §;, Vi € [N]

Bradley-Terry Win Probability (i vs. j)
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Assumption 1:

P(i defeats j) = logistic(8; — 8;) <=>
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Assumption 2: Matches are independent



Seek principled approach to dynamic global ranking

Typically observe paired comparisons over multiple (discrete) time periods
How to model the Bradley-Terry global rankings over time?

Prior Work: Cattelan et. al. 13, Lopez et. al. 18, Glickman et. al. 98,
Grossglauser et. al. 19’

Typically require strong domain knowledge and parametric assumptions

Goal: Extend BT-model dynamically with minimal additional assumptions



We propose a convex time-varying BT-model
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No specific distribution on parameters, use of convex opt. methods



Hyperparameter A controls how smooth 8" change over time

Negative Smoothness penalty
log-likelihood (convex)

T T-1
Risk objective: — Z ft(ﬁ(t)) +A Z H,@(Hl) - pY f
t=1 t=1

-
small A large A

e I e R s

0 >///\/27 "o 0.01 r——*—'//f - 00 ——————F1t—3
- - : E : » - -0.5 -0

l- v % / - = = .l T
\/\/‘\/\/ 1.0 g N 1.0

A\-\/ — e et $—0
1 \// 15

2 1 6 8 10 1 6 8 10 1 ( 10

! t t



Bias-variance trade-off by A improves prediction

bias

generalization error

variance
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We suggest to tune A via CV

Cross-validation

Estimate the generalization error for each 4 by
sample splitting (e.g., LOOCV, k-fold CV, etc.).

= Choose A with the smallest error.

e Data-driven
e Moderate computational cost
(We suggest ways to reduce the cost)

0.423

0.422

0.421

0.420 1

0.419-




Simulation: a simple case

3 teams, 10 rounds/seasons

Team ability changes
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Smoother estimates are better!
e Interpretability
e Handle small/moderate
sample size
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Simulation: comparison of different methods

Vanilla Bradley-Terry

Prediction risk:0.54
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Our model ensures stable AND accurate rankings

Our model performs well both

e Qualitatively: smooth parameter paths, stable rankings, easy to interpret

e Quantitatively: recover true rankings, predict win/loss
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Vanilla Bradley-Terry

Prediction risk:0.54

Dynamic Bradley-Terry ¢5>-square

Prediction risk:0.51
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Well... How does it work on real data?

Temporal array

Pairwise matches

Input to our
functions
on GitHub!

—> Rankings

nflscrapR 12



We also test our model against NFL-ELO rankings

2011 2012 2013 2014 2015
rank ELO | BT || ELO| BT || ELO | BT || ELO | BT || ELO | BT

I GB | GB || NE | DEN || SEA | SE |[ SEA | SEA || SEA | CAR
2 NE | NO || DEN | NE SE | CAR|| NE | DEN || CAR | ARI
3 NO | NE || GB | SEA || NE | SEA || DEN | GB || ARI | KC
4 PIT | SFE SE | MIN || DEN | ARI || GB | NE KC | SEA
5 BAL | PIT || ATL | SF || CAR | NE ||'DAL | DAL || DEN | MIN
6 SE | BAL || SEA | GB || CIN | DEN || PIT | PIT NE | DEN
7 ATL | DET || NYG | IND | NO | NO || BAL | IND || PIT | CIN
8 PHI | ATL || CIN | HOU || ARI | CIN || IND | ARI || CIN | PIT
9 SD | PHI || BAL | WAS |["IND |"IND || ARI | BUF || GB | GB
10 HOU | SD || HOU | CHI || SD | SD || CIN | DET || MIN | DET

Av. Diff. 2.6 2.6 1.9 2.8

Table 1: Bradley-Terry vs. ELO NFL top 10 rankings. Blue: perfect match, yellow: top 10 match
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Summary

We propose a time-varying extension of the BT model with minimal assumptions
Bias-variance trade-off with smoothness penalty achieves performance gain
Performance gain is confirmed in simulated settings

Our upcoming recent work builds on this approach to obtain theoretical results
Use it as a minimalist dynamic ranking benchmark for other (BT) ranking models!

Reproducibility: https://bit.ly/337r5gh
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https://bit.ly/337r5qh

Questions?

Reproducibility: https://bit.ly/337r5gh
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Uniqueness and existence of the solution requires a weak

condition for data
Ford, Jr (1957): BT-model has a unique maximum likelihood parameter iff

strongly connected

where H implies “i defeated j at least once”.
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Uniqueness and existence of the solution requires a weak

condition for data
We extend this condition to the time-varying case:

strongly connected

where H implies “i defeated j at least once throughout entire time”.
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Supp: Known limitations of the BT-model?

Batch models - need to re-fit after each new time point
Unweighted strength parameters

Assumes independence in matches played (can be relaxed)
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Supp: We suggest to tune A via CV/heuristics

Heuristic

iy

o
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Use domain knowledge in smoothness of
ranking changes to tune A.
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= Choose 4 to control maximum global ranking
movements over all time periods

maximal change
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e Human-judgement
10 e Low computational cost
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Additional Questions:

Multiple team competing at the same time?

Handling Ties?

W
W
W

Ny choose this model over ELO?
nat are the limitations of your model?

nat about changing history?
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There is a need to extend BT-model dynamically

Typically observe paired comparisons over multiple (discrete) time periods

How to model the Bradley-Terry global rankings over time?

4/\&

Moving Average State Space/Bayesian
[Cattelan et. al. 13’] [Lopez et. al. 18]

[Glickman et. al. 98]
[Grossglauser et. al. 197]

Goal: Extend BT-model dynamically with minimal additional assumptions
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Supp:

Reflect the reviews - serious comparison of methods (ELO for example) (main)
Cattelan paper comparison

NASCAR simulation (main)

WL: Put one or 2 examples up front + then BT method

Stress the use of LOOCV as a predictive benchmarking comparison tool

SS: Add reproducibility links to github

SS: How do we “borrow” information over time exactly?

SS: Can we detail the fitting process visually?
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