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Abstract
Neural recordings from high-density microelectrode arrays yield high-dimensional time-series observations, simulta-
neously recorded from multiple brain regions, with good spatial and temporal resolution. A careful study of such
time-series covariance structure can uncover functional associations between the regions, and in particular, lead-lag
relationships could indicate possible directional flows of neural information. Because such relationships in an alert
animal’s brain are observed transiently, we use repeated trials to estimate the non-stationary covariance structure. In
this thesis work, we develop methods for estimating non-stationary lead-lag relationships among high-dimensional
time series.

The first approach is to treat high-dimensional time-series recordings as matrix-variate observations and model
them by matrix-variate Gaussian graphical models. In these models, two covariance matrices describe spatial
association between the LFP channels and autocorrelation across time, respectively. We discover cross-regional
connectivity using statistical inference on the spatial covariance graph estimate. We proved the theoretical validity of
the proposed bootstrap test, based on high-dimensional central limit theorems. We showed that the proposed method
increases statistical power by incorporating the shared covariance structures in multiple recording sessions. We also
demonstrate the efficacy of the new method through both simulated datasets and multi-session LFP recordings from
the same experiment as in LaDyS.

Another approach is based on extensions of probabilistic canonical correlation analysis (pCCA) to the time-series
setting. Starting with recordings from only two brain regions, the model assumes that all of the time series within a
given region are driven by the same latent univariate time series; the resulting latent bivariate time series then defines
the time-varying cross-region dependence we seek to identify. By leaving the correlation matrix unspecified instead
of assuming a parametric structure for the cross-dependence, the model provides a model-based interpretation of
multiset CCA. These generalizations come at a cost: we now have a high-dimensional time series problem within
each brain region, involving a high-dimensional covariance structure. We solved these high-dimensional problems by
imposing sparsity of the dominant effects within a range of possible interesting lead-lag effects and developed Latent
Dynamic Analysis via Sparse Banded Graphs (LaDynS).

We also developed and studied inferential procedures to decide time epochs of significant cross-region association
from the LaDynS estimate. In particular, an autoregressive model, based on the LaDynS estimate, enables statistical
inferences of cross-regional association in terms of Granger causality. LaDynS performed well in simulations
designed to mimic real-data situations. We also applied it to 192 simultaneous local field potential (LFP) recordings
from the prefrontal cortex (PFC) and visual cortex (area V4) during a visual memory task. We found lead-lag
relationships that are highly plausible and consistent with related results in the literature.

Furthermore, we developed an improved method, Latent Dynamic Factor Analysis of High-dimensional Time-
series (LDFA-H), by incorporating the two previous methods. LDFA-H uses the LaDynS latent factor models to
describe cross-regional connectivity, while imposing a spatio-temporal matrix-variate graphical model on auto-
correlations within brain areas. This hierarchical structure allows LDFA-H to provide better estimates than LaDynS
and other known methods, even in the presence of high noise.

Last, we revisit covariance structure in LFP recordings in context of the oscillatory nature of the data mode.
We considered phase and amplitude together using the complex normal distribution, for which the distinction
between covariance and pseudo-covariance is important. This provides a new characterization of standard oscillatory
correlation measures, based on conditional distributions of phase given amplitude. We defined a complex Gaussian
latent variable model for evaluating the strength of associations across multiple brain areas and applied it to data
involving multivariate LFP time series that exhibit pronounced oscillations.
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Chapter 1

Introduction

Contemporary technologies for recording electrical activity generated by networks of neurons have
created many opportunities but also challenges for statistical machine learning. For example, local
field potential (LFP) data recorded by high-density microelectrode arrays in recent in vivo animal
experiments (e.g., Jun et al., 2017; Steinmetz et al., 2018) consist of dozens to hundreds of time
series in each of two or more brain regions, recorded simultaneously across many experimental
trials. These LFP recordings result from neural currents generated near the electrode (roughly
within 150-200 microns), involving large numbers of neurons (Buzsáki et al., 2012; Einevoll
et al., 2013; Pesaran et al., 2018), and they have been shown to correlate substantially with the
BOLD fMRI signal (Logothetis et al., 2001; Magri et al., 2012a). Under behavioral tasks, the
LFP recordings exhibit correlated trial-to-trial variability among the brain regions, indicating
their cross-regional interactions relevant to behavior (Buesing et al., 2014; Gallagher et al., 2017;
Sarnthein et al., 1998). In the data we have examined, the LFPs are first band-pass filtered, making
the time-series smooth.

In some situations, the covariation takes place with lead-lag, and the lead-lag relationship
could indicate functional and directional predictivity across the regions (Liebe et al., 2012). If we
observe univariate stationary time-series from each brain region, this is the problem solved by
frequency-domain analysis and Granger causality (Geweke, 1982). Frequency-domain analysis
decomposes the covariance structure into its spectrum and cross-spectrum under a range of
frequencies. Then, the complex-valued coherency and its magnitude, coherence, are used to
represent the coordinated activity between two brain regions. (See Section 5.5.1 for details.)
Vector auto-regressive (VAR) models can be established from the coherency structure among
multiple brain regions, and the estimated parameters can be used for Granger causality inference
(Ombao and Pinto, 2021). When multi-electrode recordings are made from an alert animal during
a behavioral task, however, the data from each brain region are multivariate nonstationary time-
series. The statistical challenge is how concise and interpretable summaries can be made to assess
the covariation and lead-lag relationship across groups of time-series observations. One approach,
in Liu et al. (2021), is to extend the Granger causality to multivariate non-stationary time series.
In this thesis, we develop and study other spatio-temporal statistical methods for estimating non-
stationary functional associations among high-dimensional time series. The relationship between
the methods is described in Fig. 1.1, where the arrows indicate conceptual and methodological
dependence.
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In Chapter 2, we treat high-dimensional time-series recordings as matrix-variate observations
and model them by matrix-variate Gaussian graphical models (Dawid, 1981). In the model, two
covariance matrices describe spatial association between the LFP channels and autocorrelation
across time, respectively. We discover cross-regional connectivity using statistical inference on the
spatial covariance graph estimate. We prove the theoretical validity of a proposed bootstrap test,
based on high-dimensional central limit theorems. We show that the proposed method increases
statistical power by incorporating the shared covariance structures in multiple recording sessions
(on different days). We also demonstrate the efficacy of the new method through both simulated
datasets and multi-session LFP recordings from the same experiment as in LaDyS.

Another approach in Chapter 3 is based on extensions of probabilistic canonical correlation
analysis (pCCA, Bach and Jordan, 2005) to the time-series setting. Starting with recordings from
only two brain regions, the model assumes that all of the time series within a given region are
driven by the same latent univariate time series; the resulting latent bivariate time series then
defines the time-varying cross-region dependence we seek to identify. By leaving the correlation
matrix unspecified instead of assuming a parametric structure for the cross-dependence, the model
provides a model-based interpretation of multiset CCA (Kettenring, 1971). These generalizations
come at a cost: we now have a high-dimensional time series problem within each brain region,
involving a high-dimensional covariance structure. We solved these high-dimensional problems
by imposing sparsity of the dominant effects within a range of possible interesting lead-lag effects
and developed Latent Dynamic analysis via Sparse banded graphs (LaDynS).

We also developed and studied inferential procedures to decide time epochs of significant
cross-region association from the LaDynS estimate. In particular, an autoregressive model, based
on the LaDynS estimate, enables statistical inferences of cross-regional association in terms of
Granger causality. (See Section 3.2.4.) LaDynS performed well in simulations designed to mimic
real-data situations. We also applied it to 192 simultaneous local field potential (LFP) recordings
from the prefrontal cortex (PFC) and visual cortex (area V4) during a visual memory task. We
found lead-lag relationships that are highly plausible and consistent with related results in the
literature.

In Chapter 4, we developed an improved method, Latent Dynamic Factor Analysis of High-
dimensional Time-series (LDFA-H), by incorporating the two previous methods. As an extension
of Gaussian process factor analysis (GPFA, Yu et al., 2009), LDFA-H uses the LaDynS latent
factor models to describe cross-regional connectivity, while imposing a spatio-temporal matrix-
variate graphical model on auto-correlations within brain areas. This hierarchical structure allows
LDFA-H to provide better estimates than LaDynS and other known methods, even in the presence
of high noise.

In Chapter 5, we revisit covariance structure in LFP recordings in the context of the oscillatory
nature of the data. We considered phase and amplitude together using the complex normal
distribution, for which the distinction between covariance and pseudo-covariance is important.
This provides a new characterization of existing oscillatory correlation measures, based on
conditional distributions of phase given amplitude. We defined a complex Gaussian latent variable
model as an extension of probabilistic CCA model for evaluating the strength of associations
across multiple brain areas and applied it to the Allen Institute dataset (Siegle et al. (2021)), which
consists of LFP recordings from 6 multi-electrode probe inserted in 6 brain regions.
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Probabilistic CCA (Bach and Jordan, 2005)

Probabilistic CCA (Section 3.2.2)

LaDynS (Chapter 3)

Complex-variate latent factor model (Chapter 5)

Matrix-variate graphical Model (Chapter 2)

Local stationary model (Section 3.2.4) GPFA (Yu et al., 2009)

LDFA-H (Chapter 4)

Figure 1.1: Flow chart of research projects in this dissertation. White boxes code for existing
methods by other researchers, orange boxes for completed projects in this thesis. Arrows indicate
conceptual and methodological dependence. See Fig. A.1 for a detailed version.
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Chapter 2

Simultaneous Inference in Multiple
Matrix-Variate Graphs for
High-Dimensional Neural Recordings

This chapter is a collaboration with Zongge Liu, Zhao Ren, Matthew A. Smith and
Robert E. Kass. This work is currently in progress, and in particular, we will further
modify the experimental data results in the final journal submission.

2.1 Introduction

As recent progress in technology enables neural measurements with finer resolution and larger
volumes (Siegle et al., 2019), it also poses new challenges for developing tools to analyze the
data in high-dimensional multi-variate time-series (Jun et al., 2017; Steinmetz et al., 2018). A
motivating dataset of this paper is local field potential recordings (LFPs) from prefrontal cortex
(PFC) and visual area V4 during a visual working memory task. Visual cortical area V4 has been
reported to retain higher order information (e.g. color and shape) and attention to visual objects
(Orban, 2008; Fries et al., 2001), while prefrontal cortex (PFC) is considered to exert cognitive
control in working memory (Miller and Cohen, 2001). Despite their spatial distance and functional
differentiation, these regions have been presumed to cooperate during visual working memory
tasks (Sarnthein et al., 1998; Liebe et al., 2012). Johnston et al. (2020) implanted two Utah arrays
(McKee, Matthew, 2019) in the visual (V4) and prefrontal cortices (PFC) of a macaque monkey
and recorded LFPs from 96 electrodes dimension in each brain area during a memory-guided
saccade task. The data consist of measurements at different time points and electrodes spaced in a
two-dimensional grid. Designating rows and columns to correspond to time points and electrodes,
respectively, we treat the data as a matrix-variate observation (Ding and Dennis Cook, 2018),
which allows us to treat temporal and spatial effects as distinct. In this paper, we develop and
study matrix-variate statistical methods for discovering the functional association between the
two brain areas from the spatio-temporal LFP recordings, across several sets of recordings made
during different sessions (on different days).

If we fix a single time point, the LFP measurement is vector-variate, where each component is
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the measurement from the corresponding electrode. In this case, we discover the cross-regional
association by looking into the coordinated activity between the pairs of electrodes from different
brain areas. The vector-variate Gaussian graphical model has been widely applied to high
dimensional data in scientific studies to explore the conditional dependence relationships among
entries of a random vector, including the neural data (Fornito et al., 2013; Vinci et al., 2018).
For a random vector X ∈ Rq, we can define an undirected graph G = (V,E) associated with
X , where the set V contains q nodes each of which corresponds to an entry in X , and the set E
consists of edges among V . Specifically, there is no edge between two nodes in V if and only if
the corresponding two variables are conditionally independent given the rest of variables in Z.
For a Gaussian vector, one can assess the graph structure, i.e., the set E, in terms of the precision
matrix, the inverse of covariance matrix of X (Meinshausen and Bühlmann, 2006) because two
variables are conditionally independent if and only if their partial correlation is zero.

Because our LFP data X(∈ Rp×q) involve both time (t = 1, . . . , p) and space (electrodes i =
1, . . . , q on the Utah arrays), instead of a vector-variate Gaussian Graphical model, we consider a
matrix-variate extension. A simple extension is imposing the vector-variate model on the flattened
matrix-variate observation, but the resulting model requires prohibitive over-parametrization
by p2q2 entries in the covariance matrix and often compromises statistical efficiency by losing
dependence structure in the matrix formulation. We instead use matrix-variate Gaussian Graphical
Model (MGGM) with Kronecker product covariance. The model consists of two covariance
parameters: temporal (row) covariance matrix Σ(T ) ∈ Rp×p and spatial (column) covariance
matrix Σ(S) ∈ Rq×q. Then, a random matrix X ∈ Rp×q is said to follow the model, denoted by
N(µ,Σ(T ),Σ(S)), if and only if vec(X) ∼ N(vec(µ),Σ(S) ⊗ Σ(T )), where µ ∈ Rp×q is the matrix
mean, vec(X) ∈ Rpq denotes the flattened matrix X , and ⊗ denotes the Kronecker product. It
imposes a strong assumption, implying, for instance, that the auto-correlation of measurement
in every electrode is proportional to Σ(T ), and the spatial covariance at every time point is
proportional to Σ(S). But, as long as it is reasonable to separate temporal and spatial covariation, it
has the advantage of reducing the number of parameters to p2 + q2 from p2q2 of the vector-variate
formulation, and it has been applied in analyzing spatio-temporal data of biomedical imaging
and financial markets (Zhou, 2014; Chen and Liu, 2015; Zhu and Li, 2018). If we denote the
temporal (row) and column (spatial) precision matrices by Ω(T ) = Σ(T ) and Ω(S) = Σ(T )−1,
respectively, the inverse of Σ(S)⊗Σ(T ) has a simple analytic form: the precision matrix of vec(X)
is (Σ(S)⊗Σ(T ))−1 = Ω(S,l)⊗Ω(T ,l). The cross-regional association is encoded in Ω(S); the spatial
partial correlation between electrodes i and j is defined as

ρ
(S)
ij := −

Ω
(S)
ij√

Ω
(S)
ii Ω

(S)
jj

. (2.1)

For the rest of this paper, we propose a three-step estimation and inference procedure for the
spatial partial-correlation. First, we estimate our spatial partial-correlation matrix by node-wise
regression (Ren et al., 2019). Second, we follow the modified Cholesky factor decomposition
Bickel and Levina (2008) to estimate the temporal covariance matrix. Finally, based on the results
from the previous two steps, we construct a new linear-functional test statistic, which effectively
tests significance of single edges or collections of multiple edges. The new inference framework
is motivated by the linear functional-based tests by Ren et al. (2019), the matrix-variate graph
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inference by Chen and Liu (2015), and the global testing framework for a collection of edges in
vector-variate graphical models by Chang et al. (2018). The rest of the contributions of the paper
are summarized as follows:
• We develop and study a method of using multiple session data collectively so that we can

discover the common spatial correlation graph across the sessions with improved sensitivity.
To do so, we use group Lasso to borrow information across the sessions and achieve more
accurate spatial covariance matrix estimates, compared to naive approaches of fitting the
model separately to each session. (See Section 2.2.1.) We demonstrate the gain in the rate
of convergence in theoretical (Section 2.3) and simulation studies (Section 2.4).

• Although group Lasso is not new, its application and consistency on auto-correlated samples
have never been theoretically studied. In Section 2.3, we provide a self-contained analysis
and derive the rates of convergence of estimation as well as prediction. It might be of
independent interest for high-dimensional statistics on correlated data.

• We provide theoretical guarantees on the proposed inference procedures using a Gaussian
approximation bootstrap method, based on Chernozhukov et al. (2012). It is the first attempt
to formulate a global significance test of an edge group in a matrix-variate graph, rather
than FDR control as in Chen and Liu (2015).

2.1.1 Other Related Work

Methods to estimate the sparse precision matrix for normal distribution are well-studied in recent
years (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2006). There are two main categories of
method for sparse precision matrix estimation: penalized likelihood method (Allen and Tibshirani,
2010) and regression based method (Liu, 2013; Ren et al., 2015). The penalized likelihood method
is a popular method for Gaussian Graphical Model estimation and inference. For example, in
Graphical LASSO (Friedman et al., 2008), the goal is to maximize the log-likelihood function
from the raw data and L1 penalty term. For statistical inference, Jankova and Van De Geer
(2015) proposed a method to estimate confidence band for entries in sparse precision matrices,
which guaranteed asymptotic normality for each edge. However, since the objective function is
non-convex, the optimization approach is theoretically less appealing; moreover, methods based
on optimization will usually require the irrepresentability condition, which is difficult to validate.
We adapted the regression-based approach in our work, and estimate the entries in precision
matrix with the regression residuals and coefficients. For MGGM, there are many interesting
works focusing on the graph estimation (Leng and Tang, 2012; Yin and Li, 2012; Zhou, 2014)
and inference (Chen and Liu, 2015; Ye et al., 2019). For example, the work of Chen and Liu
(2015) developed a multiple testing framework for support recovery in MGGM, and provided
theoretical analysis for asymptotic normality and false discovery rate (FDR) control. The work of
Ye et al. (2019) developed a paired test of matrix graphs to infer brain connectivity with correlated
samples, and similarly, their testing procedure was based on multiple testing and FDR control.
We are interested, however, in deriving a single statistic to simultaneously test the strength of
conditional dependence between subgroups of nodes across multiple graphs.

Inference under multiple matrix-variate graphs is missing in literature. However, estimation of
multiple ordinary Gaussian graphical models based on optimization method was widely studied
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(Danaher et al., 2014; Cai et al., 2016a; Lee and Liu, 2015). Moreover, Peterson et al. (2015)
proposed Bayesian inference on multiple Gaussian graphical models. A Markov random field
prior is implemented to encourages common edges across graphs, and a spike-and-slab prior
is placed on the parameters to learn the groups which have a shared structure. Therefore, this
model can learn the information between sample groups, and measure the relative network
similarity across groups effectively. The most relevant work to our topic is by Zhu and Li (2018),
where the main focus is on multiple matrix-variate graph estimation. The authors established a
non-convex optimization method with sparse and group Lasso penalization to estimate multiple
matrix-variate Gaussian graphs for matrix-normal distributed data. They further designed an
efficient optimization algorithm, and established the asymptotic properties of the estimator under
special scenarios with sparse penalty or group penalty only. However, since this work was based
on non-convex optimization method, stronger assumptions are needed to guarantee convergence
of estimation, and inference remains to be unknown under such a formulation.

2.1.2 Organization of the Paper and Notations
The paper is organized as follows. In Section 2.2, we propose the procedure for simultaneous
test while leaving theoretical justifications for our procedure in Section 2.3. In Section 2.4.1,
we present simulation studies to support our theoretical findings, and compare the performance
of multiple matrix-variate graphs with several baseline methods. The simulation results demon-
strate the advantage of our method over the state-of-art multi-graph estimation procedures. In
Section 2.4.2, we apply our method on the experimental data and reveals change of within-area
and cross-area connectivity with respect to the behavioral stages in the experimental design. Our
test results provide new insights into understanding the neural activity in PFC and V4 during
saccade task.

We adopt the following notation throughout this paper. For a euclidean vector X , we write
Xi:j for its sub-vector (Xi, Xi+1, · · · , Xj)

′. Moreover, let ‖X‖p denote the vector `p-norm of X .
For a real matrix X , let Xi,· denote the i-th row of X , X·,j denote the j-th column of X . Let
‖X‖p denote the matrix p-norm of X , while ‖X‖2 is also the spectral norm or operator norm. We
use ‖X‖F to denote its Frobenius norm and ‖X‖∞ to denote the entry-wise sup-norm. For any
set A we denote its cardinality by |A|. In our theoretical arguments, C(. . . ) means a constant with
implicit dependency to the parameters in the parentheses, whose value is changing across lines.
For universal constants without any dependency, we omit the parentheses and denote them by C.

2.2 Simultaneous Inference Framework
In this section, we develop a graph inference framework for matrix-variate observations and leave
all theoretical studies in Section 2.3. The full procedure is summarized in Algorithm 1 at the end
of this section. For each dataset on session l = 1, . . . ,m, we have nl i.i.d p×q matrix-variate sam-
ples, X(1,l), ..., X(nl,l), following matrix-variate Gaussian distribution N(0,Σ(T ,l),Σ(S,l)), where
Σ(T ,l) ∈ Rp×p and Σ(S,l) ∈ Rq×q are the temporal and spatial covariance matrices in session l,
respectively. We denote the temporal and spatial precision matrices by Ω(T ,l) := (Σ(T ,l))−1 and
Ω(S,l) := (Σ(S,l))−1, respectively.
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2.2.1 Estimation of Spatial Covariance Matrix

We first discuss the model X(k,l) ∼ N(0,Σ(T ,l),Σ(S,l)) for each graph/session l = 1, . . . ,m as a
motivation for our approach. Node-wise regression (Meinshausen and Bühlmann (2006); Liu
(2013)) has been a popular approach for graphical model analysis. Indeed, it is well-known that
the conditional distribution of X(k,l)

ti (i.e., electrode i at time t) against the rest variables in X(k,l)
t,·

follows a linear regression,

X
(k,l)
ti = X

(k,l)
t,· β

(S,l)
·,i + ε

(S,k,l)
ti , (2.2)

where it follows from the linear regression theory that

β
(S,l)
ji =

{
−Ω

(S,l)
ji /Ω

(S,l)
ii , if i 6= j,

0, if i = j,
(2.3)

and E[ε
(S,k,l)
ti ] = 0. Due to this connection between the coefficient β(S,l)

ti and the spatial precision
matrix Ω(S,l), the sparse partial-correlation assumption naturally implies sparsity in the regression
coefficient.

Defining Φ(S,l) to be the matrix of elements, Φ
(S,l)
ij := Ω

(S,l)
ij /(Ω

(S,l)
ii Ω

(S,l)
jj ), the covariance

matrix between the node-wsie spatial regression residuals, i.e., ε(S,k,l)t,· := (ε
(S,k,l)
t1 , . . . , ε

(S,k,l)
tp )>, is

Σ
(T ,l)
tt · Φ(S,l). Under the identifiability constraint that tr(Σ(T ,l)) = p,

Φ(S,l) = E
[ 1

nlp

nl∑
k=1

p∑
t=1

ε
(S,k,l)
t,· ε

(S,k,l)>
t,·

]
. (2.4)

Therefore, testing Φ
(S,l)
ij = 0 is equivalent to testing if the partial correlation between i and j

is 0. In the regression, we treat each row X
(S,l)
t,· as a q-dimensional sample, which leaves us p

correlated vector-variate samples for a sparse linear regression model. The covariance among
these “row samples” is characterized by Σ(T ,l). Note that

ρ
(S,l)
ij = −

Ω
(S,l)
ij√

Ω
(S,l)
ii Ω

(S,l)
jj

= −Φ
(S,l)
ij

√
Ω

(S,l)
ii Ω

(S,l)
tjj . (2.5)

In what follows, we build our test statistics based on some accurate estimation of Φ
(S,l)
ij and the

equivalence between ρ(S,l)
ij = 0 and Φ

(S,l)
ij = 0.

Having discussed the model for each session above, we are in a position to consider all m
sessions together to improve the estimation accuracy of each ρ(S,l)

ij . The fact that all sessions tend
to share the same support among the column precision matrices Ω

(S,l)
ij ’s implies the m coefficient

vectors β(S,l)
·,i ’s share the same support as well. To this end, we naturally treat β(S,1)

ij , . . . , β
(S,m)
ij as

the group of the coefficient parameters for pair (i, j) across the m sessions. Under a joint sparsity
structure of m graphs, we stack the m linear models and use the group Lasso (Yuan and Lin
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(2006)) to take the advantage of this group structure as follows:

{β̂(S,l)
·,i }l=1,...,m

:= argmin
{b(l)∈Rp}l=1,...,m

 1

2n0p

m∑
l=1

nl∑
k=1

‖X(k,l)
·,i −X(k,l)b(l)‖2

2 + λi
∑
j:j 6=i

√√√√ m∑
l=1

‖
∑

kX
(k,l)
·,j ‖2

2

nlp
b

(l)2
j


w.r.t b(l)

i = 0,

(2.6)

where n0 = min1≤l≤m nt. The parameter λi can be tuned using cross-validation or other model
selection methods. In our theoretical analysis, a data-driven yet conservative choice of each λi
can be picked.

With estimated regression coefficients, the fitted residuals can be calculated as

ε̂
(S,k,l)
ti = X

(k,l)
ti −X(k,l)

t,· β̂
(S,l)
·,i . (2.7)

Estimating the population covariance among residuals, the empirical covariance matrix of ε̂(S,k,l)

has a larger bias compared to the expected
√
nlp rate due to the Lasso penalty, as demonstrated

in vector-Gaussian graphical models (Liu, 2013). We introduce a bias-correction term in the
covariance estimate to remedy the large bias:

Φ̂
(S,l)
ij :=

{
− 1
nlp

∑nl
k=1

∑p
t=1

(
ε̂

(S,k,l)
ti ε̂

(S,k,l)
tj + ε̂

(S,k,l)2
tj β̂

(S,l)
ji + ε̂

(S,k,l)2
ti β̂

(S,l)
ij

)
, if i 6= j,

1
nlp

∑nl
k=1

∑p
t=1 ε̂

(S,k,l)
ti ε̂

(S,k,l)
tj , if i = j.

(2.8)

Then, we estimate Ω(S,l) and ρ(S,l) by

Ω̂
(S,l)
ij :=

Φ̂
(S,l)
ij

Φ̂
(S,l)
ii Φ̂

(S,l)
jj

and ρ̂
(S,l)
ij := −

Φ̂
(S,l)
ij√

Φ̂
(S,l)
ii Φ̂

(S,l)
jj

, respectively. (2.9)

Our estimator for the partial-correlation resembles the form proposed by Chen and Liu (2015) for
a single matrix-variate Gaussian graphical model. However, we further leverage the information
in multiple sessions using the group Lasso estimate and obtain a faster convergence rate, which is
summarized in Theorem 2.3.1 and Remark 2.3.3. This results into the improved testing accuracy
for our goals by the factor of

√
m, which is demonstrated in Theorems 2.3.5 and 2.3.6.

2.2.2 Simultaneous Test by Parametric Bootstrap
Single Edge Test

Borrowing information across m sessions not only enables us to estimate d graphs efficiently by
the group Lasso Eq. (2.6) but constructs powerful tests to discover significant associations. We
first focus on the single edge test: for a pair (i, j), we are interested in testing the following null
hypothesis,

H0,ij : ρ
(S,l)
ij = 0, ∀l = 1, . . . ,m. (2.10)
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In light of the group sparsity structure, we construct a test statistic by aggregating the partial-
correlation estimates ρ̂(S,l)

ij from all sessions l = 1, . . . ,m. In our application, we assume that the
signs of the associations do not change across the sessions, so that the sum of the estimates is close
to
∑m

l=1|ρ
(S,l)
ij |, which is zero under the null hypothesis. we moreover address the heterogeneous

uncertainty of ρ̂(S,l)
ij across l a by summing the estimates weighted by

√
nlp and propose the

following test statistic

T̂ij :=
1√
m

m∑
l=1

√
nlp ρ̂

(S,l)
ij . (2.11)

In Proposition 2.3.2 of Section 2.3, we show that our test statistic is asymptotically close to a
normal distribution with mean

Tij :=
1√
m

m∑
l=1

√
nlp ρ

(S,l)
ij , (2.12)

so T̂ij should be significantly larger than zero when the alternative is true. Once the asymptotic
variance can be consistently estimated, it is straightforward to construct the confidence interval for
T

(S,l)
ij and the associate p-value for the single edge. We do not pursue this direction immediately

here. Instead, we move to the more challenging multiple edge test scenario, and leave one the
single edge test as a trivial special case.
Remark 2.2.1. More generally, an additional sign information on elements of the alternative
ρ

(S,l)
ij may be available. With this additional knowledge, we present a test statistic based on a

linear combination of those ρ̂(S,l)
ij for l = 1, . . . ,m, which is closely related to its `1 norm. More

specifically, with an edge-specific sign vector σij := (σ
(1)
ij , . . . , σ

(m)
ij )> ∈ {−1, 1}m, we replace

T̂ij with the following sign-addressed test statistic,

T̂ij,σ :=
1√
m

m∑
l=1

σ
(l)
ij

√
nlpρ̂

(S,l)
ij . (2.13)

The normal approximation we establish in Section 2.3 also applies to the sign-addressed test
statistic.

Simultaneous Test

In the multiple edge test scenario, for a cross-region set E, we aim to test whether there is no edge
at all in E, which is stated as the following null hypothesis,

H0,E : ρ
(S,l)
ij = 0, ∀(i, j) ∈ E, ∀l = 1, . . . ,m. (2.14)

Notice that the single edge test can be treated as a special case of multiple edge test when
E = {(i, j)}. In practical neuroscience applications, E is a collection of edges connecting
different brain areas, of which the cardinality can increase as large as the rate of q2. Thus,
even if we establish asymptotic normality of a single Tij , the theory cannot apply to the high-
dimensional setting of testing H0,E with growing |E|. One may remedy the multiple testing issue

11



via Bonferroni correction, but it is known to exert overly conservative decision. In this paper, we
propose a simultaneous testing based on the supremum norm of T̂E := (T̂ij : (i, j) ∈ E):

‖T̂E‖∞ := max
(i,j)∈E

|T̂ij|. (2.15)

We notice that the asymptotic mean and coviariance matrix of T̂E is given by TE and SEE ,
respectively, where T is the groundtruth counterpart of T̂

Tij :=
1√
m

m∑
l=1

√
nlpρ

(S,l)
ij , (2.16)

and S is the matrix consisting of asymptotic covariance between Ti1j1 and Ti2j2 for (i1, j1), (i2, j2) ∈
[d]× [d], given by

S(i1,j1),(i2,j2)

:=
1

m

m∑
l=1

‖Σ(T ,l)‖2
F

p

ρ(S,l)
i1i2

ρ
(S,l)
j1j2

+ ρ
(S,l)
i1j2

ρ
(S,l)
i2j1

+
1

2
ρ

(S,l)
i1j1

ρ
(S,l)
i2j2

(
ρ

(S,l)2
i1i2

+ ρ
(S,l)2
j1j2

+ ρ
(S,l)2
i1j2

+ ρ
(S,l)2
i2j1

)
− ρ(S,l)

i1i2
ρ

(S,l)
i2j2

ρ
(S,l)
i2j1
− ρ(S,l)

i1i2
ρ

(S,l)
i1j1

ρ
(S,l)
i1j2
− ρ(S,l)

j1j2
ρ

(S,l)
i2j2

ρ
(S,l)
i1j2
− ρ(S,l)

j1j2
ρ

(S,l)
i2j1

ρ
(S,l)
i1j1

 .
(2.17)

The key idea follows the theory of high-dimensional central limit theorems (e.g., Chernozhukov
et al., 2012): although the entire vector T̂E is not asymptotically normal, ‖T̂E−TE‖∞ has the same
limiting behavior as ‖Z‖∞, where Z ∼ MVN(0, SEE).We later elucidate this idea in Section 2.3.

The distribution of ‖Z‖∞ involves a supremum norm of a normal random vector, of which
the quantile is not analytically available, and also unknown parameters in Eq. (2.17). We replace
SEE with the plug-in estimator ŜEE based on the estimates Σ̂(T ,l) and ρ̂(S,l), and approximate
the distribution of ‖Z‖∞ by the bootstrap distribution of ‖Ẑ‖∞. Based on bootstrap samples
Ẑ ∼ MVN(0, ŜEE), we construct a (1− α) confidence region

CE(1− α) :=

{
{ρ(S,l)}l=1,...,m : max

(i,j)∈E

∣∣∣∣∣ 1√
m

m∑
l=1

√
nlp(ρ̂

(S,l)
ij − ρ(S,l)

ij )

∣∣∣∣∣ ≤ q̂‖Ẑ‖∞,1−α

}
, (2.18)

where q̂‖Ẑ‖∞,1−α is the bootstrap (1 − α)-quantile of ‖Ẑ‖∞. Theorem 2 provides the validity
of the confidence region in Eq. (2.18), and Theorem 3 demonstrates the complementary power
analysis. Based on the estimated confidence region, we can obtain the trivial testing procedure
extension for c-level testings.
Remark 2.2.2. The row samples we fit the group Lasso Eq. (2.6) are correlated within each
session l = 1, . . . ,m, and the correlation is characterized by the temporal covariance matrix
Σ(T ,l). We present an estimate of Σ(T ,l) based on the Kronecker product covariance structure
in the matrix-variate Gaussian graphical models and plug it in Eq. (2.18) to obtain a consistent
confidence region. It is worthwhile to mention that under other dependence structures among
samples, one may construct different procedures for a vector-variate Gaussian graph. For instance,
Chang et al. (2018) implemented a kernel estimator for estimation of Σ(T ,l) in multi-variate time
series data.
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2.2.3 Estimation of Temporal Covariance Matrix
Our testing framework developed in Section 2.2.2 requires to estimate the Frobenius norm of
the temporal covariance matrix, Σ(T ,l). The temporal covariance matrix can be estimated by a
modified Cholesky decomposition (Bickel and Levina, 2008; Liu and Ren, 2020). The Cholesky
decomposition reveals the natural auto-regressive relationship between the signal at a particular
time point and the past signals from the matrix-variate Gaussian distribution with Kronecker
product covariance. Suppose that the Cholesky decomposition of Ω(T ,l) is

Ω(T ,l) = L(T ,l)D(T ,l)L(T ,l)>, (2.19)

where D(T ,l) is the diagonal matrix so that L(T ,l) is lower triangular and has diagonal entries 1.
Let β(T ,l) := I −L(T ,l)> and Φ(T ,l) = tr(Σ(S,l))

q
D(T ,l) so that the Cholesky decomposition of Ω(T ,l)

is rewritten by

Ω(T ,l) =
tr(Σ(S,l))

q
(I − β(T ,l))>Φ(T ,l)−1(I − β(T ,l)). (2.20)

Then, β(T ,l)
·,t is the solution of the linear regression model

X
(k,l)
ti = X

(k,l)>
·,i b+ ε

(T ,k,l)
ti , (2.21)

for each time t, and Φ(T ,l) is the residual variance

Φ
(T ,l)
tt =

1

nlq

nl∑
k=1

q∑
i=1

Var
[
ε

(T ,k,l)
ti

]
. (2.22)

Despite time-aligned experimental stages, the temporal alignment of neural response is not
guaranteed due to the existence of response latencies of neurons to stimulus (Ventura, 2004).
For example, the neural response time for saccade tasks might depend on a variety of factors in
previous studies (Armington and Bloom, 1974; Dandekar et al., 2012; Ossandón et al., 2010),
such as saccade amplitude, direction and change in luminance. Hence, we do not assume Σ(T ,l) to
be the same or very close across l but impose a rather weaker assumption that the all temporal
precision matrices share bandedness. In physiological time-series signals, the dependence across
time points exhibits natural decay as the time lag increases, so a reasonable assumption is that
β

(T ,l)
st decreases to 0 as t − s → ∞. For example, the popular auto-regressive AR(h) model

satisfies the assumption by β(T ,l)
st = 0 where t− s > h. Indeed, the AR(h) model provides with

an efficient regularization method in estimating auto-regressive coefficients for time-series data
(Seth et al., 2015; Brincat and Miller, 2015, 2016; Liu and Ren, 2020). The idea is to obtain the
optimal bias-variance trade-off in the estimation of β(T ,l)

·,t by ignoring weak dependences between
far time points. Here, we follow the procedure in Liu and Ren (2020) on the nlq observations
of time-series, (X

(k,l)
ti : t = 1, . . . , T ), for i = 1, . . . , q and k = 1, . . . , nl, which appear as the

columns of X(k,l)’s. That is, under the model, a linear regression model at each time point t is
formulated as

β̂
(T ,l)
·,t := argmin

b∈Rp

1

2nlq

nl∑
k=1

‖X(k,l)
t,· −X(k,l)>b‖2

2

w.r.t bs = 0 where s < t− hl or s ≥ t.

(2.23)
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We note that, unlike the spatial case, the estimation of the temporal covariance matrix is done
individually for each graph/session.

Having the empirical regression coefficients obtained, we estimate Φ(T ,l) given by

Φ̂
(T ,l)
tt =

1

nlq

nl∑
k=1

∥∥∥X(k,l)
t,· −X(k,l)>β

(T ,l)
·,t

∥∥∥2

2
. (2.24)

For technical issues in the following theoretical analyses, we truncate the eigenvalues of I − β̂
such as in Liu and Ren (2020). For a square matrix A, let

Pη(A) := U max{min{Λ, η}, η−1} V >, (2.25)

where A has a singular value decomposition A = UΛV > and the min and max above are
element-wise operations. Let Ω

(T ,l)
be the precursor estimator of Ω(T ,l) given by

Ω
(T ,l)

= Pη(I − β̂(T ,l))>Φ̂(T ,l)−1Pη(I − β̂(T ,l)). (2.26)

Then, one might consider to plug Ω
(T ,l)

and Σ̂(S,l) from Section 2.2.1 in Eq. (2.20). However,
this approach involves the uncertainties from both the group Lasso estimate in Eq. (2.6) and
banded Cholesky factor estimate in Eq. (2.23). Instead, we notice that Σ(T ,l) is the standardized
Σ

(T ,l)
:= Ω

(T ,l)−1
by a scalar multiplication so that the tr(Σ(T ,l)) = p. Our proposed estimate is

Σ̂(T ,l) =
p

tr(Σ
(T ,l)

)
Σ

(T ,l)
and Ω̂(T ,l) =

tr(Σ
(T ,l)

)

p
Ω

(T ,l)
. (2.27)

2.3 Theoretical Properties
Throughout the subsequent theoretical arguments, we use X(S,l) (or X(T ,l)) to notate stacked
spatial (or temporal) observation over temporal (or spatial) components and samples within
session l:

X(S,l) =
[
X(1,l)>, . . . , X(nl,l)>

]> ∈ Rnlp×q

X(T ,l) =
[
X(1,l), . . . , X(nl,l)

]> ∈ Rnlq×p.
(2.28)

These notations help us with connecting matrix-variate Gaussian graphical models to node-wise
regression models:

X
(S,l)
ti = X

(S,l)
t,· β

(S,l)
·,i + ε

(S,l)
ti (2.29)

for t = 1, . . . , nlp where X(S,l)
t are now dependent and not identically distributed due to the

temporal association, unlike the usual regression regime. Also, for any vector b(·) := {b(l) ∈
Rp}l=1,...,m, we use b(·) to denote the collection of standardized elements, i.e.,

b
(·)
j :=

{
‖X(S,l)
·,j ‖2
√
nlp

b
(l)
j

}
l=1,...,m

(2.30)
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Algorithm 1 Simultaneous Testing for Multiple MGGMs
1: Input: Multi-session data D, edge set S, test level α
2: Output: Confidence region CE(1− α)
3: Spatial precision matrix estimation:
4: for i = 1 : q do
5: Estimate the regression coefficient β(S,l)

·,i and the residual ε(S,k,l)·,i using Eq. (2.6).
6: end for
7: for l = 1 : m, i = 1 : q, j = 1 : q do
8: Estimate the de-biased residual variance Φ

(S,l)
ij using Eq. (2.8).

9: Estimate the spatial precision Ω
(S,l)
ij and partial correlation ρ(S,l)

ij using Eq. (2.9).
10: end for
11: Temporal precision matrix estimation:
12: for t = 1 : d do
13: Estimate the temporal regression coefficient β(T ,l) and residual variance Φ(T ,l) using

Eqs. (2.23) and (2.24).
14: end for
15: Hypothesis testing based on bootstrap:
16: Estimate the covariance matrix SEE of the test statistic TE using the plug-in estimator ŜEE in

Eq. (2.17).
17: Sample {Ẑi}i=1,...,B ∼ N(0, ŜEE) and calculate the confidence region inc Eq. (2.18).
18: return Confidence region CE(1− α)

so that Eq. (2.6) is expressed in a more canonical form:

β̂
(S,·)
·,i := argmin

{b(l)∈Rp}l=1,...,m

{
1

2n0p

m∑
l=1

‖X(S,l)
·,i −X(S,l)b(l)‖2

2 + λi
∑
j:j 6=i

∥∥∥b(·)
j

∥∥∥
2

}
w.r.t b(l)

i = 0.

(2.31)

We make the following assumptions on the observed dataset.
Assumption 1. maxl=1,...,m

nl
n0
≤ κ1 for some positive constant κ1 where n0 = minl=1,...,m nl.

Assumption 2. tr(Σ(T ,l)) = p, ∀l = 1, . . . ,m.
Assumption 3. For l = 1, . . . ,m, let {λ(T ,l)

i }i=1,...,p are the eigenvalues of Σ(T ,l) while 1
κ3
≤

λ
(T ,l)
1 ≤ λ

(T ,l)
2 ≤ · · · ≤ λ

(T ,l)
p ≤ κ3 for some constant κ3 > 0; define and assume {λ(S,l)

i }i=1,...,q

similarly for Σ(S,l).
Assumption 4. Let d be the group-wise maximum node degree, i.e.,

d := max
i

∣∣∣{j ∈ [p]\{i} : Ω
(S,l)
ij 6= 0 for some l ∈ [m]

}∣∣∣. (2.32)

We assume group sparsity of the partial correlation graph in spatial association by

d · max{m, log2(qmn0p)}
(mn0p)1/2

→ 0 (2.33)

as n0 →∞.
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Assumption 5. We assume the temporal precision matrix Ω(T ,l) for each l = 1, . . . ,m has
Cholesky decomposition as in Eq. (2.20) where β(T ,l) satisfies

|β(T ,l)
st | < κ5(t− s)−αl−1 for t, s : s < t, (2.34)

for αl > 0. We further assume that, for α0 = minl=1,...,m αl,

log(qmn0p)

(n0q)1−1/(α0+1)
→ 0 (2.35)

as n0 →∞.

Assumption 1 suggests that the sample size from each graph is balanced and we use n0 to
represent the common level. Assumption 2 is for the identifiability. Assumption 3 is a standard
eigenvalue assumption in covariance estimation (Cai et al., 2016b). Assumption 4 indicates that
the column precision matrix is sparse, and limits the spatial dimension of the matrix variable
given the number of samples, the temporal dimension and the number of graphs. The first part of
Assumption 5 is a fair assumption for neural time series, since neural data, especially LFPs, are
usually modeled as an auto-regressive process with limited order, which is also widely considered
in literature (Bickel and Levina, 2008; Liu and Ren, 2020); the second part of is similar to
Assumption 4 and limits the temporal dimension.

2.3.1 Non-asymptotic error bound for the group Lasso estimate

We first provide a theoretical justification for our group Lasso procedure proposed in Section 2.2.1.
Although with correlated rows, our results below demonstrate that the optimal rates of convergence
for estimation and prediction can be still obtained compared to the case with i.i.d. samples. The
proof is provided in Appendix B.2.2.

Theorem 2.3.1. Suppose that λi =
√

m+log(qmn0p)
n0p

. Then,

P



max
i

∑
j:j 6=i

∥∥∥∆
(S,·)
ji

∥∥∥2

2
≤ C(κ1, κ3) d

m+ log(qmn0p)

n0p
,

max
i

∑
j:j 6=i

∥∥∥∆
(S,·)
ji

∥∥∥
2
≤ C(κ1, κ3) d

√
m+ log(qmn0p)

n0p
,

max
i

1

2n0p

m∑
l=1

∥∥∥X(S,l)∆
(S,l))
·,i

∥∥∥2

2
≤ C(κ1, κ3) d

m+ log(qmn0p)

n0p


≥ 1− C(qmn0p)

−1/2.

(2.36)
for a sufficiently large n0.
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2.3.2 Theoretical justification for the simultaneous edge testing

We now turn to theoretical results from Section 2.2.2. In the following proposition, we show that
the error of our partial-correlation estimate ρ̂(S,l)

ij in Eq. (2.9) is driven by the leading term

Θ
(S,l)
ij :=

δ̃
(S,l)
ij√

Φ
(S,l)
ii Φ

(S,l)
jj

−
Φ

(S,l)
ij δ̃

(S,l)
jj

2Φ
(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj

−
Φ

(S,l)
ij δ̃

(S,l)
ii

2Φ
(S,l)
ii

√
Φ

(S,l)
ii Φ

(S,l)
jj

(2.37)

where δ̃(S,l)
ij := Φ̃

(S,l)
ij − Φ

(S,l)
ij = 1

nlp
ε

(S,l)>
·,i ε

(S,l)
·,j − Φ

(S,l)
ij . We further provide a non-asymptotic

bound for O(S,l)
ij , which is the error not governed by Θ

(S,l)
ij . That is, ρ̂(S,l)

ij −ρ(S,l)
ij = Θ

(S,l)
ij +O

(S,l)
ij .

We provide the proof in Appendix B.2.3.

Proposition 2.3.2. Suppose that ρ̂(S,l) is estimated based on λi’s given as in Theorem 2.3.1. Then,

P

[
max
i,j:i 6=j

m∑
l=1

∣∣∣O(S,l)
ij

∣∣∣ ≥ C(κ1, κ3) d
m+ log2(qmn0p)

n0p

]
≤ C(qmn0p)

−1/2. (2.38)

for a sufficiently large n0.

Remark 2.3.3. For the simultaneous multiple edge test, in order to make ‖
∑m

l=1

√
nlp√
m
O

(S,l)
E ‖∞

converging to 0 in probability, the sample size requirement is n0p = ω(d
2(m+log2(qmn0p))2

m
) as

n0 → ∞. In comparison, one can also naively apply the estimation procedure for each graph
separately as in Chen and Liu (2015), and compute a similar test statistic to perform single edge
and multiple edge test following our procedure. However, such a naive method will require a
much stronger sample size assumption, which is n0p = ω(d2m log3 q).

Built upon the idea from Chernozhukov et al. (2012), we establish the Gaussian approximation
result for our test statistic ‖T̂E‖∞.

Proposition 2.3.4. Let Z ∼ N(0, SEE) where the elements of SEE are given as in Eq. (2.17).
Then,

sup
x>0

∣∣∣P[‖T̂E − TE‖∞ > x]− P[‖Z‖∞ > x]
∣∣∣

≤ C(κ1, κ3) max

{
log7/8(qmn0p)

(mn0p)1/8
, d log1/2|E|m+ log2(qmn0p)

(mn0p)1/2

} (2.39)

for a sufficiently large n0.

The following theorem parallels to the previous proposition except that we replace the popula-
tion covariance SEE with its plug-in estimator ŜEE . At a high level, as long as the covariance SEE
can be estimated well under the ‖·‖∞-norm, the Gaussian approximation results remains valid. Its
proof relies on Propositions Propositions 2.3.2 to 2.3.4 and is provided in Appendix B.2.5.

Theorem 2.3.5. Let Ẑ ∼ N(0, ŜEE) where the elements of ŜEE is a plug-in estimator of SEE in
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Eq. (2.17) given observed data D. Then,

sup
x>0

∣∣∣P[‖T̂E − TE‖∞ > x]− P[‖Ẑ‖∞ > x|D]
∣∣∣

≤ C(κ1, κ3, κ5) max


log7/8(qmn0p)

(mn0p)1/8
, d log1/2|E|m+ log2(qmn0p)

(mn0p)1/2
,

log2/3|E| log1/3(qmn0p)

(n0q)1/3−1/(6α0+6)
, log2/3|E|

(
m+ log(qmn0p)

mn0p

)1/6


(2.40)

with probability at least 1− C(qmn0p)
−1/2 for a sufficiently large n0.

The above theorem establishes the theoretical foundation for the simultaneous multiple edge
testing procedure in Algorithm 1. Next, we formally state the validity of our testing procedure as
well as a power analysis. The proof is given in Appendix B.2.6
Theorem 2.3.6. Suppose that n0 increases at a faster rate than

1

mp
max

{
log7(qmn0p), log4|E|(m+ log(qmn0p)),

d2 log|E|(m+ log2(qmn0p))
2

}
(2.41)

and
1

q
(log2|E| log(qmn0p))

1+1/(2α0+1). (2.42)

Under the null H0,E ,
P[0 /∈ CE(1− α)]

p→ α. (2.43)

On the other hand, as an alternative, if

‖TE‖∞ ≥ C(κ1, κ3, κ5)
√

(log q + log(1/α)) max
(i,j)∈E

S(i,j),(i,j), (2.44)

then we have P[0 /∈ CE(1− α)]
p→ 1.

The theorem implies that as long as the sum of the partial correction vector ρ(S,l)
ij across l

is above the order of
√
m log q/(n0p), the power converges to 1 as n0 → ∞. Assuming the

same order ρ(S,l)
ij across all graphs 1 ≤ l ≤ m, i.e., ρ(S,1)

ij � · · · � ρ
(S,m)
ij , the power of the

test converges to 1 as n0 → ∞, if max(i,j)∈E|ρ(S,l)
ij | is larger than

√
log q/(mn0p). In contrast,

the corresponding detection boundary is
√

log q/(n0p) if we do not aggregate multiple graphs.
Therefore, by borrowing the information from multiple graphs/sessions, we are able to reduce the
detection accuracy by a factor of root m.

2.3.3 Non-asymptotic error bound for the temporal covariance matrix es-
timate

Proposition 2.3.7. Suppose that hl = b(nlq)1/(1+α)c. Then, following the procedure defined in
Section 2.2.3,

P

[
max
l

max
1≤t≤p

‖β̂(T ,l)
·,t − β(T ,l)

·,t ‖2 ≥ C(κ1, κ3, κ5)

√
log(qmn0p)

(n0q)1−1/(2α0+2)

]
≤ C(qmn0p)

−1/2, (2.45)
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P

[
max
l

max
1≤t≤p

∣∣∣∣Φ̂(T ,l)
tt − tr(Σ(S,l))

q
Φ

(T ,l)
tt

∣∣∣∣ ≥ C(κ1, κ3, κ5)

√
log(qmn0p)

(n0q)1−1/(2α0+2)

]
≤ C(qmn0p)

−1/2.

(2.46)
In the end, we summarize the estimation bounds under the Frobenius norm for individual

temporal covariance and precision matrices obtained in Section 2.2.3. Although exiting results
for i.i.d. sample are available in Liu and Ren (2020), there is no result for correlated samples as
derived in our model. We thus provide a self-contained analysis, which might be of independent
interest. The proof is given in Appendix B.2.8.
Theorem 2.3.8. Suppose that hl = b(nlq)1/(1+α)c and η = C(κ3) satisfies η ≤ λ1(I − β(T ,l)) for
l = 1, . . . ,m, where λ1(I − β(T ,l)) is the smallest eigenvalue of I − β(T ,l). Then,

P


max
l

1

p

∥∥∥∥Σ
(T ,l) − tr(Σ(S,l))

q
Σ(T ,l)

∥∥∥∥2

F

≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)
,

max
l

1

p

∥∥∥∥Ω
(T ,l) − q

tr(Σ(S,l))
Ω(T ,l)

∥∥∥∥2

F

≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)


≤ C(qmn0p)

−1/2.

(2.47)

Consequently, their scaled Frobenius norms can be consistently estimated, which is sufficient
for our main result Theorem 2.3.5. The proof is given in Appendix B.2.9.
Corollary 2.3.9. Suppose that hl = b(nlq)1/(1+α)c and η = C(κ3) satisfies η ≤ λ1(I − β(T ,l))
for l = 1, . . . ,m. Then,

P

[
max
l

∣∣∣∣∣‖Σ̂(T ,l)‖2
F − ‖Σ(T ,l)‖2

F

p

∣∣∣∣∣ ≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)
,

]
≤ C(qmn0p)

−1/2 (2.48)

for sufficiently large n0.

2.4 Numerical Studies

2.4.1 Simulation Studies
We study the performance of our method under three spatial precision matrix structures, which
are shown in Figure 2.1: (1) an random graph, where the edges between each nodes are randomly
generated, with probability

√
3
q

of having an edge between i and j; (2) a hub graph, where the

nodes are divided into d q
20
e hub groups; and (3) a chain graph, which is a special case of banded

graphs with bandwidth equal to 1. Once the common graph structure is fixed, we assign the
precision value for the non-zero edges randomly from Unif(0, 0.3

2l−1 ) for each session l. For the
temporal precision matrix, we generate Σ(T ,l) by Eq. (2.20). Following Assumption 5, we set
β

(T ,l)
st = κ5(t− s)−αl−1 for 1 ≤ s < t ≤ p with M = 0.2 and αl = 1. For Φ(T ,l), we simply use

the p× p identity matrix, for 1 ≤ t ≤ d.
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Figure 2.1: Simulated spatial graphs.

In Section 2.4.1, we compare the performance of our method with existing others in edge
detection and precision entry estimation. In turn, in Section 2.4.1, we demonstrate the accuracy
of our proposed bootstrap procedure in approximating the ‖TE‖∞ as theoretically shown in
Theorem 2.3.5.

Edge-wise Estimation Comparison

We compare our method (M0) with the following Gaussian Graph estimation methods:
• (M1): matrix-variate Gaussian multi-graph estimation method by Zhu and Li (2018)
• (M2): regression based Gaussian graphical model estimation method by Ren et al. (2019)
• (M3 & M4): optimization based Gaussian graphical model estimation methods Cai et al.

(2016a) and Lee and Liu (2015), respectively
Methods (M0) and (M1) are based on the matrix-variate Gaussian model, while the others use

the vector-variate model which does not incorporate temporal correlation. Before applying the
methods based on vector-variate model, we pre-process the data with whitening over temporal
dimension and treat signal at each time point as i.i.d sample.

The edge detection performances of the methods are evaluated by receiver operating charac-
teristic (ROC) curves. An ROC curve is a plot of the true positive rate (TPR) against the false
positive rate (FPR) while detection threshold varies by changing hyperparameters. For (M0) and
(M2), we fix the sparsity penalty hyperparameter at λ ∈ {1e− 2, 1e− 4, 1e− 6} and obtain the
ROC curves across different values of α. For the other methods, we obtain the ROC curves across
different values of the sparsity penalty hyperparameter while fixing the other hyperparameters.
The results with λ = 1e− 4, n = 5, q = 30, and m = 5 are shown in Fig. 2.2. The ROC curves
show that our method recovers the underlying graph structure accurately and outperforms the other
methods. Moreover, comparing methods designing for ordinary Gaussian graph, our method is
much better when temporal dimension p is large, thanks to the efficient use of spatial observations
and temporal precision estimation based on Cholesky decomposition in Section 2.2.3. Our method
shows moderate sensitivity to the choice of the group lasso hyper-parameter; it performs uniformly
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better than the baseline methods, compared in Section 2.4, across the studied range of tuning
parameters, especially under high temporal and spatial dimensions. See Fig. B.1 for the ROC
curve results at different values of the tuning parameter.

Figure 2.2: Simulation results under different graph configurations and temporal dimensions. We
fix m = 5, n = 5, and q = 30. Rows change with types of graphs, and columns correspond to
different temporal dimensions. Blue curve corresponds to our method (M0) while other colors
correspond to baseline methods. Our method is consistently better than baselines while our
advantage is very obvious for large p, thanks to our temporal covariance estimation procedure.

Simultaneous Test

In this section, we evaluate the performance of the proposed bootstrap test in Eq. (2.18) and
verify the correctness of Theorem 2.3.5 by simulated data. Under fixed temporal dimension
p = 50 and spatial dimension q = 30, we examined the accuracy of estimated quantiles of ‖Z‖∞
in Eq. (2.18) from 3000 bootstrap samples, under two edge sets: Eoff = {(i, j) : i 6= j} and
Ezero = {(i, j) : Ω

(S,l)
ij = 0, ∀l = 1, . . . ,m}. For the groundtruth, we estimated the corresponding

empirical quantiles of ‖T̂E − TE‖∞ from 1000 simulated datasets, following the matrix-variate
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Gaussian distribution with Kronecker product covariance and the three previously studied spatial
partial-correlation graph (random, hub, and chain). Tables 2.1 and 2.2 show the mean and
standard deviation of the empirical coverage by 100 bootstrap quantiles q̂‖Ẑ‖∞,1−α over simulated

‖T̂E−TE‖∞. We observe that the empirical coverages are near to the nominal values at n = 5 and
converge further as the number of sample n increases. This result demonstrates the asymptotic
validity of the bootstrap confidence interval, which has theoretical foundation on Theorem 2.3.5.
Comparing Table 2.1 and Table 2.2, we observe that our method performs better for smaller
number of sessions, which agrees with our theory.

n Quantile Random Hub Band
Eoff Ezero Eoff Ezero Eoff Ezero

5
0.925 0.897(0.012) 0.898(0.009) 0.908(0.010) 0.908(0.009) 0.903(0.009) 0.907(0.010)
0.95 0.935(0.006) 0.932(0.010) 0.939(0.007) 0.939(0.007) 0.934(0.008) 0.939(0.007)
0.975 0.962(0.006) 0.969(0.002) 0.970(0.004) 0.971(0.004) 0.971(0.004) 0.971(0.003)

10
0.925 0.926(0.005) 0.924(0.006) 0.923(0.005) 0.923(0.006) 0.929(0.005) 0.927(0.006)
0.95 0.944(0.003) 0.949(0.004) 0.945(0.004) 0.945(0.005) 0.953(0.005) 0.950(0.005)
0.975 0.967(0.004) 0.970(0.002) 0.978(0.003) 0.977(0.005) 0.980(0.003) 0.977(0.003)

20
0.925 0.926(0.005) 0.921(0.004) 0.926(0.005) 0.926(0.006) 0.928(0.004) 0.925(0.005)
0.95 0.954(0.005) 0.944(0.003) 0.948(0.004) 0.948(0.004) 0.951(0.005) 0.943(0.005)
0.975 0.978(0.001) 0.975(0.004) 0.977(0.005) 0.975(0.004) 0.978(0.003) 0.975(0.003)

Table 2.1: Average of empirical coverages and their standard deviations for m = 3, p = 50, q =
30.

n Quantile Random Hub Band
Eoff Ezero Eoff Ezero Eoff Ezero

5
0.925 0.906(0.009) 0.900(0.009) 0.901(0.006) 0.904(0.006) 0.886(0.008) 0.888(0.007)
0.95 0.935(0.006) 0.938(0.006) 0.932(0.006) 0.934(0.007) 0.922(0.007) 0.923(0.008)
0.975 0.971(0.004) 0.962(0.005) 0.962(0.004) 0.963(0.004) 0.959(0.005) 0.959(0.005)

10
0.925 0.908(0.006) 0.913(0.005) 0.931(0.005) 0.928(0.006) 0.931(0.006) 0.928(0.007)
0.95 0.934(0.004) 0.937(0.004) 0.951(0.003) 0.950(0.003) 0.953(0.004) 0.953(0.005)
0.975 0.961(0.004) 0.961(0.003) 0.971(0.003) 0.971(0.003) 0.974(0.003) 0.975(0.003)

20
0.925 0.917(0.007) 0.920(0.004) 0.934(0.004) 0.930(0.006) 0.931(0.006) 0.928(0.007)
0.95 0.947(0.006) 0.948(0.005) 0.959(0.004) 0.955(0.004) 0.953(0.004) 0.953(0.005)
0.975 0.978(0.002) 0.975(0.004) 0.985(0.002) 0.984(0.002) 0.974(0.003) 0.975(0.002)

Table 2.2: Average of empirical coverages and their standard deviations for m = 5, p = 50, q =
30.

2.4.2 Experimental Data Analysis

In this paper, we analyze multiple LFP recordings from prefrontal cortex (PFC) and visual area V4.
PFC has been considered to mediate control of attention and response modulation in higher-order
visual areas, such as V4. The Smith Lab in Carnegie Mellon Neuroscience Institute collected the
dataset from a monkey performing a memory-guided saccade task (Johnston et al., 2020). One
trial of the task consists of the following timeline:

• The animal fixated on a point at the center of the screen for 200ms.
• A circular target appeared at one of eight randomly chose locations of the screen for 50ms.
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• The animal had to remember the location of the target while maintaining fixation for a delay
period of 500ms.

• After the delay period, the fixation point was turned off, and the monkey had to make a
saccade to remember the location of the target.

Figure 2.3: (a) Primate cortical areas of the attention network (Sapountzis and Gregoriou, 2017).
Pink areas are the approximate locations of attention control areas while blue areas are the
approximate locations of visual areas. (b) Utah array with 10x10 recording electrodes with
400µm interval (McKee, Matthew, 2019). For each region, one Utah array with 96 electrodes
is implanted. (c) LFPs were recorded simultaneously from V4 and PFC. The X axis is time in
millisecond, while Y is the electrode. Time is aligned at t = 0 for each trial when the circular
target just appeared. The total length is 750ms covering all experimental stages.

Local field potentials in the two brain regions were simultaneously measured by two Utah
arrays, each of which consists of 96 electrodes, while the same monkey was performing the task
over m = 5 sessions. During data preprocessing, only successful trials were kept in the dataset.
For each session l = 1, . . . ,m, we observe 1000 matrix-variate observations (nl) with 192 spatial
channels (q) and 750 time points (q) at sampling rate 1kHz. From each session, we leave 100 trials
to cross-validate the group lasso penalty tuning parameter, λ. A subset of the data containing the
first trial is shown in Fig. 2.3. The color in the heatmap corresponds to the intensity of LFP signal.

Our objective is to detect changes in the spatial correlation structure within and between the
brain regions across four experimental stages: fixation stage (200ms), cue stage (50ms), early
delay stage (the first 250ms of delay stage) and late delay stage (the last 250ms of delay stage).

23



Correlated neural connectivity vs. Physical distance

First, we apply our method in PFC and V4 separately. We set λi to be the same value λ and use
the cross-validation method to determine the group Lasso tuning parameter λ.

Using the spatial location of the electrodes, we can infer the relationship between neural
connectivity and physical distance. Because the magnitude of the test statistic T represents the
connectivity intensity significance of the connectivity is encoded in our test statistic, we look into
the average of the test statistic estimates T̂ on groups of physically equidistant edges. Fig. 2.4
demonstrates the monotonic decreasing relationship of the average test statistic with the physical
distance at late delay period in V4. We can see the same trends in the other experimental stages
and PFC, which echo with previous studies (Goris et al., 2014; Vinci et al., 2018) about the strong
dependency of correlated neural activity on the physical distance. This also serves as a sanity
check about the implication of our test statistic for the strength of connectivity.
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Figure 2.4: The average test statistic vs physical distance during late delay period in V4. Notice
that the test statistic declines as the physical distance increase. This phenomenon is consistently
identified over all experimental stages, both in PFC and V4

Within-area Inference

Next, for each area and experimental stage, we apply our method on the corresponding data
segments. For each electrode i, we evaluate its overall connectivity within the same region by
1
d

∑
j:(i,j)∈E∗ |

∑d
t=1 ρtij|, where E∗ is the set of significant edges at level α = 0.05 under single

edge test (Eq. (2.10)). Fig. 2.5 shows the distributions of within-areal connectivity across area and
experimental stages. It suggests that the within-areal connectivity are strongest during fixation
and cue stage, while it declines during delay stage. We also observe that PFC exhibits more
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within-areal connectivity than V4. In particular, the connectivity within V4 winds down at the
delay stage, compared to PFC, when the animal needs to process the visual signals.

Figure 2.5: Connectivity strength distribution over 2D spatial array for PFC and V4 across the
experimental stages. The connectivity in both area decays during the late delay stage, while V4
seems to be more influenced than PFC.

Cross-area Inference

Now we apply our method to the recordings from the both area and identify significant cross-area
connectivity. For limited computation resource and collinearity, we subsample the electrodes in
each area by taking every other node along the physical dimension, reducing the spatial dimension
from 192 to 50 in total. It reduces the number of cross-area edges to 625 cross-area edges. Fig. 2.6
shows the significant cross-area edges at α = 0.05. We identify the least number of edges during
the cue stage, whereas the number increases during the early delay stage. The late delay stage,
when the animal is about to make a choice, exhibited the most identified cross-area edges.
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Figure 2.6: Significant cross-region edges for PFC and V4 over various experimental stages.
X and Y axes are spatial coordinates of the electrodes on each array. Lower left pane shows
electrodes in PFC, while upper right shows electrodes in V4. We only show significant cross-area
edges in red color.

We analyzed overall cross-region connectivity at the four exerimental stages, using the multiple
edge test statistic TEcross , where Ecross consists of cross-area edges. We identified that the two area
are most strongly connected during late delay period, and there is few connectivity between two
areas during cue period.

Our inference results support the previous studies that neural variability in the spiking of
neurons declines during the stimulus onset (Churchland et al., 2010), and visual stimuli causes a
substantial decrease in correlation of cortical neurons (Smith and Kohn, 2008). We also discovered
robust sustained wihtin-area connectivity in PFC during the delay stage, compared to V4, which
was also reported by Leavitt et al. (2017).

2.5 Conclusion
In this paper, we propose a linear-functional based test using partial correlation estimator to detect
sparse edges and infer existence and strength of connectivity between two groups of nodes in
multiple matrix-variate Gaussian Graphical Models. The spatial dimension, temporal dimension
and number of graphs are allowed to diverge and even exceed the number of samples.

Both our model and our assumptions are driven by the practical concerns in neural data
analysis. In real data, we observe the within-area connectivity and cross-area connectivity
changes accordingly, as the animal entered different experimental stages. Especially, within-area
connectivity peaks during early experimental stages, while cross-area connectivity grows when the
animal processes the visual signal during late delay stage. Our inference results are illuminating
for scientists to understand the activity and connectivity of PFC and V4 during visual tasks.

Our method is the first attempt to address the simultaneous test problem in multiple matrix-
variate Gaussian graphs. It would be interesting to extend our method to other popular yet
non-Gaussian type of graphs such as Poisson networks. Besides, we currently implemented group
Lasso for our regression model which involves one tuning parameter; in the future, a tuning-free
or scale-free method such as self-tuned Dantzig selector and scaled Lasso is desirable to handle
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the issue of heterogeneity and correlation in regression with data from multiple matrix-variate
Gaussian graphical models. These directions are beyond the scope of this work and will be
interesting for future directions.
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Chapter 3

Cross-population Analysis of
High-dimensional Non-stationary Neural
Oscillations

This chapter is a collaboration with Valérie Ventura, Eric Yttri, Matthew A. Smith,
and Robert E. Kass. This work was submitted to Annals of Applied Statistics and is
currently under revision for resubmission. The simulation study and experimental
data result is subject to change in the final journal submission.

3.1 Introduction
Contemporary technologies for recording neural activity can produce multiple time series in each
of two or more brain regions (e.g., Jun et al., 2017; Steinmetz et al., 2018), enabling identification
of interactions across regions that are relevant to behavior. In some situations, it may be possible
to find lead-lag relationships, which could indicate directional flow of information. For stationary
time series, this is the problem solved by Granger causality (Geweke, 1982). When recordings
are made from an alert animal during a behavioral task, however, the neural activity is constantly
evolving, and the statistical challenge is to find a method that allows for non-stationarity.

Various non-stationary methods have been applied to discovering simultaneous associations
within brain regions (Buesing et al., 2014; Zhao and Park, 2017) or between regions (Gallagher
et al., 2017), but their ability to find lead-lag relationships has not yet been established. The
DKCCA method of Rodu et al. (2018) uses a dynammic kernel canonical correlation analysis
to establish cross-region interaction, and it can estimate non-stationary lead-lag relationships,
but it is unable to assess statistical significance of those relationships. In this paper we define
and develop a framework that is able to detect lead-lag relationships across two brain regions,
prefrontal cortex (PFC) and visual area V4, during a visual memory task, based on multiple time
series of local field potential recordings (LFPs).

Visual cortical area V4 has been reported to retain higher order information (e.g. color and
shape) and attention to visual objects (Orban, 2008; Fries et al., 2001), while prefrontal cortex
(PFC) is considered to exert cognitive control in working memory (Miller and Cohen, 2001).
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Despite their spatial distance and functional differentiation, these regions have been presumed to
cooperate during visual working memory tasks. For example, Sarnthein et al. (1998) discovered
enhanced oscillatory activity in both regions during visual memory retention and Liebe et al.
(2012) found delay-specific oscillatory coupling between V4 and lateral PFC. The nature and
exact timing of this interaction, however, have remained unknown. One leading possibility is
that PFC exerts control using oscillations in the beta range (16-30 Hz) that are coupled across
brain regions (Miller et al., 2018). The previous work of Klein et al. (2020) developed methods
for analyzing multivariate phase coupling of such oscillations. Here, we turn our attention to
coupling of the oscillatory power, while the subject was remembering the location of a visual
target, with the goal being to identify lead-lag relationships in beta-band power between PFC and
V4, observed in LFPs recorded simultaneously from the two regions.

LFPs result from neural currents generated near the electrode (roughly within 150-200 mi-
crons), involving large numbers of neurons (Buzsáki et al., 2012; Einevoll et al., 2013; Pesaran
et al., 2018), and they have been shown to correlate substantially with the BOLD fMRI signal
(Logothetis et al., 2001; Magri et al., 2012a). The recordings in this study come from a pair of
96-electrode arrays implanted in PFC and V4. The data were sampled every millisecond across a
500 millisecond time interval, with 3000 replications (3000 experimental trials). Each of the 3000
observations forms a 192-dimensional time series, in two groups of 96-dimensional time series.
The method we developed, Latent Dynamic analysis via Sparse banded graphs (LaDynS), was able
to identify non-stationary cross-area interactions from the PFC and V4 data. Our data-analytic
findings are summarized in Figs. 3.8 to 3.11, and presented in full in Section 3.4.

According to the LaDynS model, each of the two multivariate time series is driven by a
latent univariate time series, with the resulting latent bivariate time series potentially representing
the time-varying cross-area dependence we seek to identify. Instead of assuming a parametric
structure for the cross-dependence of the latent bivariate time series, however, we have left
the correlation matrix unspecified. As we show in Section 3.2.2, assuming each multivariate
observation, at each time point, depends linearly on a latent normal random variable, having mean
0 and variance 1, we then get a time series generalization of probabilistic CCA (pCCA; Bach and
Jordan (2005)), as depicted graphically in Fig. 3.1. Furthermore, maximum likelihood applied
to the model gives the same data summary as multiset CCA (Kettenring, 1971). This provides
a nice interpretation, but it isn’t yet practical because the latent time series correlation matrix,
which must be estimated, has 2T (2T − 1)/2 parameters, where T is the number of time points.
We therefore resorted to sparse estimation methods.

As we describe in Section 2, LaDynS uses L1 regularization on the cross-precision parameters
within a band defined by a maximal lead or lag of the partial cross-correlations. There is also a
maximal lead or lag of the partial auto-correlations, but the remaining partial auto-correlations
(at less than the maximum lead or lag) are not regularized. Because the data we analyzed were
band-pass filtered, the time series were unusually smooth. This led us to consider and apply
additional regularization along the diagonals of the auto-correlation matrices. Statistical inference
in this context can be based on false discovery rate (FDR) based on p-values computed from
asymptotics for a desparsified version of the estimated precision matrix (Jankova and Van De Geer,
2015). Simulations in Section 3.3 show that LaDynS is able to correctly identify the timing,
relative to behavior, of interactions between regions, as illustrated in Fig. 3.2b, when applied to
artificial data designed to be similar to those we analyzed. The simulations make credible our
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(a)

(b)

Figure 3.1: (a) Graphical representation of the pCCA model of Bach and Jordan (2005), where
X1 and X2 are random vectors and Z is a random variable. (b) A variation on (a) that facilitates
extension to the case in which X1 and X2 are multivariate time series and (Z1, Z2) is a bivariate
time series.

data-analytic results in Section 3.4. We add some discussion in Section 3.5.

3.2 Methods

We begin by reviewing and reformulating probabilistic CCA (pCCA) in Section 2.1, then gen-
eralize to time series, in Section 2.2, obtaining to form a dynamic version of pCCA. Theorem
2.2 establishes an equivalence between the GENVAR version of multi-set CCA (Kettenring,
1971) and maximum likelihood applied to our dynamic pCCA. We define LaDynS based on
the loglikelihood function in Equation (16) of Section 2.3. We go over choice of regularization
parameters in Section 2.3.1, application to smooth time series in Section 2.3.2, and our algorithm
for solving the penalized maximum likelihood problem in Section 2.3.3. We discuss statistical
inference in Section 2.4.

3.2.1 Probabilistic CCA for two random vectors

Given two random vectors X1 ∈ Rd1 and X2 ∈ Rd2 , canonical correlation analysis (CCA)
(Hotelling, 1992) finds the sets of weights w1 ∈ Rd1 and w2 ∈ Rd2 that maximize Pearson’s
correlation between linear combinations w>1 X1 and w>2 X2. This can be rewritten as

σcc = maxwk,k=1,2:w>k Σkkwk=1

∣∣w>1 Σ12w2

∣∣ (3.1)

where Σkk = Var(Xk) is the covariance matrix of Xk, k = 1, 2, and Σ12 = Cov(X1, X2) the
cross-covariance matrix between X1 and X2. The sample estimator σ̂cc is obtained by replacing
Σkk and Σ12 with their sample analogs Σkk and Σ12 respectively. The maximizing weights ŵk
and linear combinations ŵ>k Xk are referred to as the canonical weights and canonical variables,
respectively.

Probabilistic CCA assumes that X1 and X2 are driven by a common one dimensional latent
variable Z:

Xk|Z = µk + Z · βk + εk, k = 1, 2,

Z ∼ N(0, 1)
(3.2)
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where µk ∈ Rdk and βk ∈ Rdk are mean vectors and factor loadings, respectively, and εk
indep∼

MVN(0,Φk) (Bach and Jordan, 2005). Fig. 3.1a depicts the dependence of X1 and X2 on Z. The
parameters in Eqs. (3.1) and (3.2) relate as follows:
Theorem 3.2.1 (Bach and Jordan, 2005, Theorem 2). The maximum likelihood estimators (MLEs)
(β̂1, β̂2) in Eq. (3.2) based on N observed vector pairs

{
X1,[n], X2,[n]

}
n=1,2,...,N

are equivalent to
the CCA solution (ŵ1, ŵ2, σ̂cc) in Eq. (3.1) according to:

β̂k = Σkkŵkmk, where m1m2 = σ̂cc and |mk| ≤ 1, k = 1, 2. (3.3)

Theorem 3.2.1 proves that the original CCA setting and the generative pCCA model both
yield the same estimate of σcc. Here, we introduce an alternative pCCA extension that allows
distinct latent variables for X1 and X2, as depicted in Fig. 3.1b. Specifically, we assume that

Xk|Zk = µk + Zk · βk + εk (3.4)

where µk ∈ Rdk , βk ∈ Rdk and εk
indep∼ MVN(0,Φk) are defined as in Eq. (3.2), and (Z1, Z2) are

bivariate normally distributed:(
Z1

Z2

)
∼ MVN

((
0
0

)
,

(
1 σ12

σ12 1

))
. (3.5)

We now state an equivalence similar to Theorem 3.2.1 between the original CCA and the alternative
pCCA model.
Theorem 3.2.2. The MLEs (β̂1, β̂2, σ̂12) in Eqs. (3.4) and (3.5) based on N observed vector pairs{
X1,[n], X2,[n]

}
n=1,2,...,N

are equivalent to the CCA solution (ŵ1, ŵ2, σ̂cc) according to:

β̂k = Σkkŵkmk, where m1m2σ̂12 = σ̂cc and |mk| ≤ 1, k = 1, 2. (3.6)

Theorem 3.2.2 is a corollary of Theorem 3.2.3, below. In practice, out of all possible solutions,
we take m1 = m2 = 1 because then Zk|Xk = ŵ>k Xk is the canonical variable almost surely,
as proven in Theorem 3.2.3, and σ12 = Cov[Z1, Z2] equals the canonical correlation σcc. This
means that σ12 is an interpretable parameter, and one for which inference is simpler than for the
canonical correlation in model (3.2), because in that case the MLE σ̂cc is an indirect function of
the model parameters (see Theorem 3.2.1). The interpretability property also carries on when we
extend model (3.5) to model (3.8) below, to capture lagged association between two vector time
series. Finally, the choice m1 = m2 = 1 also implies that the MLEs (β̂1, β̂2, σ̂12) do not depend
on the Gaussian assumption in Eq. (3.4) (see Theorem 3.2.3), which may be questionable if, for
example, the X’s are positive variables like LFP power envelopes or discrete like spike counts.

3.2.2 Probabilistic CCA for two time series of random vectors
Suppose now that we are interested in the correlation dynamics between two times series of
random vectors X(t)

1 ∈ Rd1 and X(t)
2 ∈ Rd2 , t = 1, 2, . . . , T . We use Eq. (3.4) to model the

dependence of X(t)
k on its associated latent variable Z(t)

k at each time t:

X
(t)
k |Z

(t)
k = µ

(t)
k + β

(t)
k · Z

(t)
k + ε

(t)
k , k = 1, 2, (3.7)
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where µ(t)
k , β(t)

k and ε(t)k
indep∼ MVN(0,Φ

(t)
k ) are defined as in Eq. (3.4). Then for each t we could

define a parameter σ(t)
12 as in Eq. (3.5) to capture population-level association between X(t)

1 and
X

(t)
2 at t. But because we are also interested in lagged associations between X(t)

1 and X(s)
2 for

s 6= t, we replace bivariate model (3.5) for Z(t)
1 and Z(t)

2 for a given t by a global model for all
t = 1, . . . , T : ((

Z
(t)
1

)
t=1,...,T

,
(
Z

(t)
2

)
t=1,...,T

)>
∼ MVN(0,Σ), diag(Σ) = 1, (3.8)

where Σ captures jointly all simultaneous and lagged associations within and between the two
time series. Fig. 3.2a illustrates the dependence structure of this model. We decompose Σ and its
inverse Ω as

Σ =

(
Σ11 Σ12

Σ>12 Σ22

)
and Ω =

(
Ω11 Ω12

Ω>12 Ω22

)
(3.9)

to highlight the auto-correlations Σ11 and Σ22 within and cross-correlations Σ12 between the time
series, and denote by Σ

(t,s)
kl , (t, s) ∈ [T ]2, the elements of Σkl. Then Σ

(t,t)
12 for some fixed t has

the same interpretation as σ12 in Eq. (3.2). Further, −Ω
(t,s)
12 /

√
Ω

(t,t)
11 Ω

(s,s)
22 is the partial correlation

between the two time series at times t and s. Thus, when an element of Ω12 is non-null, depicted
as the red star in the expanded display in Fig. 3.2b, its coordinates (t, s) and distance (t− s) from
the diagonal indicate at what time in the trial a connectivity happens between two time series, and
at what lead or lag, respectively. In our neuroscience application, they represent the timing of
connections and direction of information flow between two brain regions.

Theorem 3.2.2 provided an equivalence between a non-distributional method (CCA) and its
probabilistic representation (pCCA). We now derive a similar connection between the multi-set
generalization of CCA introduced by Kettenring (1971) and the dynamic pCCA model in Eqs. (3.7)
and (3.8). Multi-set CCA applied to 2T random vectors {X(t)

1 , X
(t)
2 : t = 1, . . . , T} finds weights

{w(t)
1 , w

(t)
2 : t = 1, . . . , T} that maximize a notion of correlation among linear combinations

{w(t)>
1 X

(t)
1 , w

(t)>
2 X

(t)
2 : t = 1, . . . , T}. In particular, the GENVAR extension minimizes the

generalized variance of these linear combinations, defined as the determinant of their correlation
matrix (Wilks, 1932), which we refer to as the canonical correlation matrix:

ŵ
(1)
1 , . . . , ŵ

(T )
2 = argmin

w
(1)
1 ,...,w

(T )
2

det

(
Var

[(
w

(t)>
1 X

(t)
1

)
t=1,...,T

,
(
w

(t)>
2 X

(t)
2

)
t=1,...,T

])
(3.10)

where Var denotes the sample variance-covariance matrix and the weights w(t)
k are scaled so that

every diagonal entry of the matrix is 1.
Theorem 3.2.3. Suppose that β̂(t)

k , k = 1, 2, t = 1, . . . , T , and Σ̂ are the MLE in Eqs. (3.7)
and (3.8) satisfying minimum conditional entropy of {X(t)

1 , X
(t)
2 } given {Z(t)

1 , Z
(t)
2 }, based on

N observed pairs of vector time series
{
X

(t)
1[n], X

(t)
2[n] : t = 1, . . . , T

}
, n = 1, . . . , N . Then, they

minimize the negative log-likelihood

log det(Σ) + tr
(
Σ−1Σ

)
, (3.11)

33



(a)

(b)

Figure 3.2: Extended pCCA model for two multivariate time series X(t)
1 and X

(s)
2 , t, s =

1, . . . , T . (a) Dynamic associations between vectors X(t)
1 and X

(s)
2 are summarized by the

dynamic associations between their associated 1D latent variables Z(t)
1 and Z(s)

2 , and estimated by
their cross-precision matrix Ω12. (b) When a significant cross-precision entry is identified, e.g.,
the red star in the expanded view of Ω12, its coordinates and distance from the diagonal indicate
at what time in the experiment connectivity between two brain areas occurs, and at what lead or
lag. Here the red star is in the upper diagonal of Ω12, which means that, at this particular time,
region 1 leads region 2, or Z1 → Z2 in short (a non-zero entry in the lower diagonal would mean
Z2 → Z1). We represent this association by the red arrow on the right-most plot, with a lag of
two units of time for illustration.

where Σ = Var

[(
β

(t)>
1 Var

−1
[X

(t)
1 ]X

(t)
1

)
t=1,...,T

,
(
β

(t)>
2 Var

−1
[X

(t)
2 ]X

(t)
2

)
t=1,...,T

]
, with β1 and

β2 scaled such that diag Σ = 1, and they are equivalent to Kettenring’s GENVAR multiset solution

β̂
(t)
k = Var[X

(t)
k ]ŵ

(t)
k and Σ̂ = Var

[(
ŵ

(t)>
1 X

(t)
1

)
t=1,...,T

,
(
ŵ

(t)>
2 X

(t)
2

)
t=1,...,T

]
. (3.12)

The proof is in Appendix C.1. We have two remarks. Remark 1: Theorem 3.2.3 gen-
eralizes Theorem 3.2.2. To see that, let T = 1 so that X1 ≡ X

(1)
1 , X2 ≡ X

(1)
2 and Σ =
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(
1 Σ

(1,1)
12

Σ
(1,1)>
12 1

)
=

(
1 σ12

σ12 1

)
. The GENVAR procedure solves

argmin
w1,w2

det
(
Var

[
w>1 X1, w

>
2 X2

])
≡ argmin

w1,w2

det

((
1 σ12

σ12 1

))
,

where σ12 =
wT1 Σ12w2√

wT1 Σ1w1

√
wT2 Σ2w2

. This minimization problem is equivalent to the CCA problem in

Eq. (3.1) and Var
[
ŵT1 X1, ŵ

T
2 X2

]
=

(
1 σ̂cc
σ̂cc 1

)
, which implies σ̂12 = σ̂cc, as in Theorem 3.2.2.

Remark 2: Eq. (3.11) does not involve any component of Eq. (3.7) so the MLEs do not depend
on the Gaussian assumption of X(t)

k given Z(t)
k . This is confirmed by simulation in Section 3.3.

The MLEs do however depend on the Gaussian distribution in Eq. (3.8), but this assumption is
more easily justifiable: the latent factors are the canonical variables ŵ(t)>

k X
(t)
k , which are weighted

sums of the observations and thus likely to be Gaussian based on some central limit theorem.

3.2.3 Latent Dynamic Analysis via Sparse Banded Graphs (LaDynS)
Our goal is to estimate the association dynamics between two multivariate time series using
the covariance matrix Σ of their associated latent time series in Eq. (3.11). However, the
prohibitive number of parameters in Σ means its estimation is prone to errors, especially
when T is large. We reduce their number by regularizing Ω = Σ−1 in Eq. (3.11), rewriting
log det(Σ) = log det(Ω−1) = − log det(Ω), and assuming that Ω has the banded structure
depicted in Fig. 3.3.
Definition 3.2.4 (LaDynS). Given N simultaneously recorded pairs of multivariate time series
{X1[n], X2[n]}n=1,...,N , and a 2T × 2T sparsity matrix Λ with element Λ

(t,s)
kl regularizing |Ω(t,s)

kl |,
k, l = 1, 2, LaDynS finds weights

{
ŵ

(t)
k , t = 1, 2, . . . , T, k = 1, 2

}
and precision matrix Ω̂ that

minimize the penalized negative log-likelihood:

− log det(Ω) + tr(ΩΣ) + ‖Λ� Ω‖1, (3.13)

where Σ = Var
[
w

(1)>
1 X

(1)
1 , . . . , w

(T )>
2 X

(T )
2

]
satisfies diag(Σ) = 1, � denotes the Hadamard

product operator such that (A�B)ij = Aij ×Bij , ‖A‖1 =
∑

i,j |Aij|, and

Λ
(t,s)
kl =


λcross, k 6= l and 0 < |t− s| ≤ dcross,

λauto, k = l and 0 < |t− s| ≤ dauto,

λdiag, t = s,

∞, otherwise,

which constrains auto-precision and cross-precision elements within a specified range.
In our neuroscience application, in particular, it is reasonable to assume that lead-lag rela-

tionships occur with delay less than temporal bandwidth dcross, which can be determined by the
maximal transmission time in synaptic connections between two brain regions under study. We
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Figure 3.3: The elements of Ωkk, k = 1, 2, and Ω12 are set to zero outside of the gray bands of
widths (1 + 2dauto) and (1 + 2dcross), respectively.

thus set Λ
(t,s)
12 =∞ when |t− s| > dcross to force the corresponding cross-precision elements to

zero and thus impose a banded structure on Ω12. We apply sparsity constraint Λ
(t,s)
12 = λcross > 0

on the remaining off-diagonals of Ω12 to focus our discovery on sparse dominant associations and
reduce the effective parameter size. We proceed similarly with the auto-precision matrices Ω11

and Ω22, using penalty λauto and temporal bandwidth dauto. Unless domain knowledge is available,
we recommend that dauto be set to the largest significant auto-correlation across all observed time
series X(t)

k,i , k = 1, 2, i = 1, . . . , N , and impose no further sparsity (λauto = 0) unless there is
reason to expect it.

Notice that to facilitate the choice of Λ, we grouped its elements into diagonal and off-diagonal
elements and assigned the same penalties, λcross, λauto = 0 and λdiag, within each group.

Choosing regularization parameters

In graphical LASSO (gLASSO) problems, where the aim is to recover correct partial correlation
graphs, penalties are often chosen to minimize the predictive risk (Shao, 1993; Zou et al., 2007;
Tibshirani and Taylor, 2012). Our aim is different: only the partial cross-precision matrix Ω12 is of
substantive interest, and because minimizing the predictive risk does not select models consistently
(Shao, 1993; Zhu and Cribben, 2018) and may thus fail to retrieve non-zero elements of Ω12, we
choose instead a value of λcross that controls the number of false cross-precision discoveries. We
proceed by permuting the observed time series in one brain region to create a synthetic dataset
that contains no cross-region correlation, then applying LaDynS to that data for a range of values
of λcross and recording the resulting number of significant partial correlation estimates, which are
necessarily spurious. We use the smallest λcross that yields fewer false discoveries than a chosen
threshold. We expect this regularization to make similarly few false discoveries on experimental
data.

Finally, if Σ̂ cannot be inverted, as is the case for the band-pass filtered experimental data we
analyze in Section 3.4, we penalize its diagonal by λdiag > 0. We explain the specific calibration
we used for the analyzed datasets in Section 3.3.2 and study the properties in Section 3.3.3.
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Fitting LaDynS

Eq. (3.13) is not a convex function of the weights and precision elements (although it is not
impossible that it may be for some particular Σ) and its convex relaxation is unknown, so it is
difficult to find its global minimum. The following coordinate descent algorithm finds a minimum,
possibly local.

Assuming that all canonical weights w(t)
k are fixed, Eq. (3.13) reduces to the gLASSO problem:

argmin
Ω
− log det(Ω) + tr(ΩΣ) + ‖Λ� Ω‖1, (3.14)

which we can solve efficiently using a number of existing algorithms; here we use the P-gLASSO
algorithm of Mazumder and Hastie (2012). Then assuming that all parameters are fixed but a
single weight w(t)

k , Eq. (3.13) can be re-arranged as the linear problem:

argmin
w

(t)
k

∑
(l,s)6=(k,t)

w
(t)>
k Cov

[
X

(t)
k , X

(s)
l

]
w

(s)
l Ω

(t,s)
kl s.t. w(t)>

k Var(X
(t)
k )w

(t)
k = 1, (3.15)

for which an analytical solution is available. That is, our algorithm alternates between updating Ω

and the weights w(t)
k until the objective function in Eq. (3.13) converges. Its computational cost is

inexpensive: a single iteration on our cluster server (with 11 Intel(R) Xeon(R) CPU 2.90GHz
processors) took in average less than 0.8 seconds, applied to the experimental data in Section 3.4.
A single fit on the same data took 47 iterations for around 33.57 seconds until the objective
function converged at threshold 0.001. See Algorithm 2 in Appendix C.2 for details and Python
package ladyns on github.com/HeejongBong/ladyns.

3.2.4 Inference for associations between two vector time series
Let Ω̂ and ŵ(t)

k , t = 1, . . . , T , k = 1, 2, be the LaDynS estimates of canonical precision matrix

and canonical weights, and Σ = Var
[
ŵ

(1)>
1 X

(1)
1 , . . . , ŵ

(T )>
2 X

(T )
2

]
be the empirical covariance of

the estimated latent variables, defined in Eq. (3.13). Note that Ω̂ 6= Σ
−1

since Ω is constrained to
be sparse. Based on these estimates, we want to identify the non-zero partial cross-correlations in
Ω12, that is to identify the epochs of association between the two time series.

Formal inference methods for Ω based on its LaDynS estimate (Eq. (3.13)) are not available,
but because LaDynS reduces to graphical LASSO (gLASSO) when the weights w(t)

k in Eq. (3.14)
are fixed, we co-opt gLASSO inference methods. Specifically, Jankova and Van De Geer (2015)
suggested de-sparsifying the gLASSO estimate Ω̂ according to

Ω̃ = 2Ω̂− Ω̂(Σ + λdiagIT )Ω̂, (3.16)

and proved that, under mild assumptions and as n → ∞, each entry of Ω̃ satisfies the Central
Limit Theorem with center the true precision Ω:

∀(t, s),

(
Ω̃

(t,s)
12 − Ω

(t,s)
12

)
√

Var[Ω̃
(t,s)
12 ]/N

d→ N(0, 1). (3.17)
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We applied this result to the de-sparsified LaDynS estimate of Ω, even though we do not quite
have a gLASSO setup, and we verified by simulation that its elements are indeed approximately
normal in Section 3.3.3. Jankova and Van De Geer (2015) also proposed an estimator of σ(t,s)

12 , but
it is likely to be downward biased in our framework since estimating the canonical weights w(t)

k

induces extra randomness. Instead, we use the bootstrap estimate V̂ar[Ω̃
(t,s)
12 ] described at the end

of this section, and rely on Eq. (3.17) to obtain p-values:

p(t,s) = 2− 2Φ

(
|Ω̃(t,s)

12 |
/√

V̂ar[Ω̃
(t,s)
12 ]/N

)
(3.18)

to test H(t,s)
0 : Ω

(t,s)
12 = 0, for each (t, s) ∈ [T ]2 within dcross of the diagonal of Ω12.

Permutation bootstrap estimate of Var[Ω̃
(t,s)
12 ]: A permutation bootstrap sample {X∗1,[n], X

∗
2,[n]}n=1,...,N

is generated by sampling a random permutation ofN trials independently from each of {X1,[n]}n=1,...,N

and {X2,[n]}n=1,...,N . The resulting sample contains no correlated activity. Hence, applying La-
DynS to the bootstrap sample yields estimates of canonical precision matrix Ω̂∗, canonical weights
ŵ∗k(t)s, empirical covariance of the estimated latent variables Σ

∗
= Var

(
ŵ
∗(1)>
1 X

∗(1)
1 , . . . , ŵ

∗(T )>
2 X

∗(T )
2

)
,

and de-sparsified precision matrix estimate Ω̃∗ (Eq. (3.16)) under the global null hypothesis of
no correlated activity. Repeating the bootstrap simulation B times produces B bootstrap values
Ω̂b, ŵb(t)k , Σ

b
, and Ω̃b, b = 1, . . . , B. We estimate Var[Ω̃

(t,s)
12 ] with V̂ar[Ω̃

(t,s)
12 ], the sample standard

error of {Ω̃b,(t,s)
12 }b=1,2,...,B. Notice that V̂ar[Ω̃

(t,s)
12 ] is obtained under the global null hypothesis –

i.e. under H(t,s)
0 : Ω

(t,s)
12 = 0 simultaneously for all (t, s) – because it is not trivial to simulate

bootstrap data that satisfy a specific H(t,s)
0 without assuming that all other elements of Ω12 are

also null. We garnered from simulations that V̂ar[Ω̃
(t,s)
12 ] is thus likely to slightly underestimate

Var[Ω̃
(t,s)
12 ], which makes for slightly sensitive p-values.

Control of false discoveries: Because we perform tests for many entries of Ω12, we cap the false
discovery rate

FDR = E [FDP] , where FDP =
#{falsely discovered entries}

#{discovered entries} ∨ 1
(3.19)

below a pre-specified level αBH using the procedure of Benjamini and Hochberg (1995) (BH).
To proceed, let p[1] ≤ · · · ≤ p[nroi] denote the ordered permutation bootstrap p-values p(t,s) that
correspond to nroi cross-precision elements in the region of interest. Then, we find the maximum
kBH satisfying p[kBH] ≤ kBH

nroi
αBH and reject H(t,s)

0 with p(t,s) smaller than kBH
nroi
αBH. The FDR

guarantee is established by Benjamini and Hochberg (1995) as long as the p(t,s)’s are independent
and valid p-values.
Cluster-wise inference by excursion test: As a further safeguard against falsely detecting corre-
lated activity between brain areas, we obtain p-values for each identified connectivity epoch using
the excursion test of Ventura et al. (2005), as follows. For each cluster k identified by the BH
procedure, we calculate the test statistic:

Tk := −2
∑

(t,s)∈cluster k

log p(t,s), (3.20)
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which is reminiscent of Fisher’s method for testing the global significance of multiple hypotheses.
We calculate the corresponding p-value as

∫∞
Tk
f0(u) du, since large values of Tk provide evidence

against cross-area connectivity in cluster k, where f0 is the null distribution of maxj Tj under
the global null hypothesis of no connectivity anywhere. We use f0 rather than the respective null
distributions of each Tk to control the family-wise type I error rather than the type I error for each
cluster. We approximate f0 by the previous permutation bootstrap: for each permuted dataset
b = 1, . . . , B, we estimate the cross-precision matrix and corresponding p-values, identify all
clusters of p-values below kBH

nroi
αBH, calculate the corresponding test statistics in Eq. (3.20), and let

Sb be their maximum. The B values Sb are a sample from f0, which we use to approximate the
p-value for cluster k by the sampling proportion:

1

B

B∑
b=1

I(Sb ≥ Tk).

3.2.5 Locally Stationary State-space Model and Local Granger Causality
Our model in Eqs. (3.7) and (3.8) can be formulated as a state-space model by rewriting the
joint multivariate Gaussian model for the latent vectors in Eq. (3.8) as the set of all conditional
distributions

Z
(t)
1 =

dauto∑
s=1

α
(t)
11,sZ

(t−s)
1 +

dcross∑
s=1

α
(t)
12,sZ

(t−s)
2 + η

(t)
1 ,

Z
(t)
2 =

dauto∑
s=1

α
(t)
22,sZ

(t−s)
2 +

dcross∑
s=1

α
(t)
21,sZ

(t−s)
1 + η

(t)
2 ,

(3.21)

where dauto and dcross are the bandwidth parameters in Section 3.2.3, η(t)
k , k = 1, 2, are independent

N(0, φ
(t)
k ) noise random variables, and the α(t)

kl,s’s are vector auto-regressive coefficient parameters
for the auto-correlation within region if k = l, k = 1, 2, and the cross-correlation between regions
if k 6= l with time lag s.

This state-space formulation is convenient to impose local stationarity on the latent time
series, since the functional connectivity within and between brain regions relatively changes
slowly over time, and to calculate the Granger causality between regions. We achieve the
former by fitting stationary state-space models in moving windows of time. For the latter, Z2

is said to Granger-cause Z1 at time t if some α(t)
12,s are non-zero (Ombao and Pinto, 2021) (and

conversely if some α(t)
21,s are non-zero). The partial coefficient of determination (partial R2)

between
(
Z

(t−dcross)
2 , . . . , Z

(t−1)
2

)
and Z(t)

1 , conditional on Z(t−dauto)
1 , . . . , Z

(t−1)
1 , calculated as

R2
2→1(t) = 1− Var[residual of Regression 1]

Var[residual of Regression 2]
, (3.22)

where

Regression 1 : Z
(t)
1 ∼Z

(t−dauto)
1 + · · ·+ Z

(t−1)
1 + Z

(t−dcross)
2 + · · ·+ Z

(t−1)
2

Regression 2 : Z
(t)
1 ∼Z

(t−dauto)
1 + · · ·+ Z

(t−1)
1

(3.23)
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is therefore a measure of local Granger causality at time t. To allow a physiologically meaningful
minimum connection time τ1 from brain regions 2 to 1, we can also replace the second regression
by

Regression 2 : Z
(t)
1 ∼Z

(t−dauto)
1 + · · ·+ Z

(t−1)
1 + Z

(t−τ1+1)
2 + · · ·+ Z

(t−1)
2

+1{τ2 > dcross}
(
Z

(t−dcross)
2 + · · ·+ Z

(t−τ2−1)
2

)
,

where τ2 = dcross, unless there is reason to consider a shorter connection epoch. A plug-in
estimator of R2

2→1(t) is easily obtained from the estimated covariance matrix of(
Z

(t)
1 , . . . , Z

(t−dauto)
1 , Z

(t−1)
2 , . . . , Z

(t−dcross)
2

)
, (3.24)

without actually running the regressions.
Autocorrelations in the latent time series can inflate R2 values. We therefore test the statistical

significance of R2
2→1(t) (or R2

1→2(t)) by comparing its observed value to its null distribution,
obtained by repeatedly permuting the trials in one region and calculating R2

2→1(t) in the permuted
data. The permuted data satisfy the null hypothesis of no cross-region connection and exhibit the
same autocorrelation structure as the original latent time series.

3.3 LaDynS performance on simulated data
We have introduced LaDynS to estimate the dynamic connectivity between two or more multivari-
ate time series, and proposed inference procedures to identify when connectivity is statistically
significant. We apply LaDynS to experimental data in Section 3.4, but first we examine its
performance on simulated datasets that have properties similar to the experimental data. We check
the validity of the proposed p-value estimation and FDR procedure using simulated datasets with
known canonical correlation matrices. The reproducible code scripts for the simulations and
experimental data analyses are provided at github.com/HeejongBong/ladyns.

3.3.1 Simulated datasets with known canonical correlation matrix
One simulated dataset consists of N = 1000 i.i.d. vector time-series X1 and X2 of dimensions
d1 = d2 = 25 and durations T = 50, simulated from Eq. (3.7). The latent time series Z1 and Z2

in Eqs. (3.7) and (3.8) have zero mean vectors and covariance matrix Σ = Ω−1, with

Ω =

[
(Σ0,1 + λIT )−1 Ω12

Ω>12 (Σ0,2 + λIT )−1

]
, (3.25)

where Ω12 is the cross-precision matrix of interest. The elements of the auto-precision matrices
were simulated from the squared exponential function:

Σ
(t,s)
0,k = exp

(
−c0,k(t− s)2

)
, k = 1, 2 (3.26)

with c0,1 = 0.148 and c0,2 = 0.163 chosen to match the LFPs autocorrelations in the experimental
dataset. The diagonal regularizer λIT was added to ensure that Σ0,1 and Σ0,2 are invertible, and
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we set λ = 1. For Ω12, we considered the connectivity scenario depicted in Fig. 3.4d, where
the two latent times series connect in three epochs, the first with no latency, the second with
series 2 preceding series 1, and the third with series 1 preceding series 2. We accordingly set the
cross-precision matrix elements to

Ω
(t,s)
12 =

{
−r, if (t, s) is colored blue,
0, elsewhere,

(3.27)

where r measures the intensity of the connection. Finally, we rescaled Σ to have diagonal elements
equal to one.

Once the latent time series Z1 and Z2 were generated, we simulated a pair of observed time
series according to

X
(t)
k = Y

(t)
k − β

(t)
k

(
w

(t)>
k Y

(t)
k − m̂

(t)
k

)
+ β

(t)
k Z

(t)
k , (3.28)

for k = 1, 2 and t = 1, . . . , T , where Y (t)
1 and Y (t)

2 are uncorrelated baseline time series, β(t)
k

are factor loadings that change smoothly over time, w(t)
k are canonical weights that satisfy the

relationship with β(t)
k in Eq. (3.12), and m̂(t)

k is the empirical mean of β(t)>
k Y

(t)
k , for k = 1, 2.

We subtracted β(t)
k

(
w

(t)>
k Y

(t)
k − m̂

(t)
k

)
to ensure that X(t)

k has canonical correlation matrix Σ

and the same mean as Y (t)
k . We took Y (t)

1 and Y (t)
2 to be the two multivariate time-series of

neural recordings analyzed in Section 3.4, which we permuted to remove all cross-correlations.
To reduce auto-correlation across time, we added space-correlated white noise to the baseline
time series. The amount of noise was set to be comparable to the diagonal regularization λIT
introduced in Eq. (3.25). Finally we set βk ∈ Rdk×T to be the factor loadings estimated in
Section 3.4. The resulting latent time series β(t)

k Z
(t)
k and noise baseline vector Y (t)

k in Eq. (3.28)
have comparable scales and auto-correlations by construction, for k = 1, 2, to ensure that
the simulated observed time series X(t)

k have scales and auto-correlations comparable to the
experimental data in Section 3.4.

3.3.2 LaDynS estimation details
For the simulated dataset, we do not need the regularization on the diagonal of Σ, so λdiag was
set 0. The other hyperparameters were set to dauto = 10, dcross = 10, and λauto = 0. The penalty
on the cross-correlation elements, λcross, was automatically tuned at every run to control false
discoveries (see Section 3.2.3).

3.3.3 Results
Figure 3.4a displays the LaDynS cross precision estimate Ω̂12 fitted to one dataset simulated as
in Section 3.3.1 under the connectivity scenario depicted in Fig. 3.4d, with connection strength
r = 0.4 in Eq. (3.27). Figure 3.4b shows the permutation bootstrap p-values for the entries of
the desparsified cross-precision estimate Ω̃12 (Eq. (3.18) with permutation bootstrap simulation
size B = 200; see Section 3.2.4). Small p-values concentrate near the locations of true non-zero

41



(a) (b) (c)

(d)

Figure 3.4: Output and inference of LaDynS applied to a
dataset simulated as described in Section 3.3.1. (a) Cross-
precision estimate Ω̂12 of the true Ω12 shown in (d). (b) Bootstrap
p-values for the de-sparsified estimate Ω̃12. (c) Discovered non-
zero cross-precision estimates by the BH procedure at nominal
FDR 5% followed by the excursion test at significance level 5%.

cross-precision entries and are otherwise scattered randomly. We applied first the BH procedure
with target FDR 5% (Section 3.2.4) and subsequently the excursion test at the 5% significance
level to all discovered clusters. The significant clusters (p < 0.005) are plotted in Fig. 3.4c .

Normal approximation for the p-values in Eq. (3.18): We investigate the validity of the Normal as-

sumption by comparing the empirical distribution of R = 60 repeat estimates Ω̃
(t,s)
12 /

√
V̂ar[Ω̃

(t,s)
12 ]

(Eq. (3.17)) to the standard normal distribution using QQ-plots. Fig. 3.5 shows QQ-plots for three
randomly chosen representative time pairs (t, s) with Ω

(t,s)
12 = 0, which confirms that the null

distribution of Ω̃
(t,s)
12 /

√
V̂ar[Ω̃

(t,s)
12 ] is close to standard Gaussian. We further check the validity

of the permutation bootstrap variance estimates V̂ar[Ω̃
(t,s)
12 ], shown in Fig. 3.6b, by comparing

it to the empirical variance of the R = 60 estimates Ω̃
(t,s)
12 , shown in Fig. 3.6a. There is good

agreement for the entries that have precision value zero, Ω
(t,s)
12 = 0. Fig. 3.6c further displays

the Q-Q plot of the repeat ratios of permutation bootstrap over empirical estimates of Var[Ω
(t,s)
12 ]

for these entries, with F (B − 1, R − 1) being the reference distribution. The good agreement
suggests that the bootstrap estimate of Var[Ω

(t,s)
12 ] is reliable.

FDR control: Fig. 3.7 shows estimated FDR and FNR for a range of simulated connection
strengths (r in Eq. (3.27)) and nominal FDR values. The estimated and nominal FDRs agree when
the connection is weak but the former slightly exceeds the latter otherwise. This is likely due to
the well-known sensitivity of the BH procedure to positively correlated p-values, consistent with
the fact that, in our experience, the false discoveries are mostly adjacent to correct discoveries
(discoveries that have Ω

(t,s)
12 6= 0).
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Figure 3.5: Null distributions of three representative entries of Ω̃
(t,s)
12 /

√
V̂ar[Ω̃

(t,s)
12 ]. The null

distributions are obtained from R = 60 simulated datasets (Section 3.3.1) and compared to the
standard Gaussian distribution via QQ-plots. There is good agreement.

(a) (b) (c)

Figure 3.6: Standard deviations of desparsified precision elements. Variance obtained (a)
from samples from the ground-truth generative multiset pCCA model and (b) from permutation
bootstrapped samples. (c) F-statistics of ratios between the two variances for null entries of Ω12,
showing good agreement.

(a) (b)

Figure 3.7: False Discovery Rate control of LaDynS’ inference. (a) Estimated false discovery
rate and (b) false non-discovery rate for target FDR ∈ [0, 10]%, under the connectivity scenario
in Fig. 3.4d, for connectivity intensities r = 0.2, 0.4, 0.6, 0.8 and 1.0 in Eq. (3.27). The dotted
line is a (0,1) line.
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3.4 Experimental Data Analysis
We applied LaDynS to local field potentials (LFPs), collected as described in Khanna et al. (2020),
from two Utah arrays implanted in a Macaque monkey’s prefrontal cortex (PFC) and V4 during a
memory-guided saccade task. Each trial of the task started with a monkey fixating its eyes toward
the center of the screen. A visual cue was given for 50ms to indicate a target location, which
was randomly chosen from eight locations. The monkey had to remember the target location
while maintaining eye fixation for a delay period of 500ms. After the delay period, the monkey
reoriented its eyes toward the remembered position, and reward was given on successful trials.
As in Khanna et al. (2020), we analyzed the time series during the delay period, based on 3000
successful trials. Because beta oscillations are often associated with communication across brain
areas (Klein et al., 2020; ?), we first filtered LFP recordings using complex Morlet wavelets at beta
oscillation frequency 18Hz (which was the most active frequency in the magnitude scalograms),
and obtained the beta oscillation power envelopes as the absolute values of the filtered signals. We
note that the target frequencies were different from those in Bong et al. (2020a), yielding different
data and somewhat different results. After downsampling them to 200Hz, we applied LaDynS.
Because the filtered data were very smooth, we used a regularization λdiag > 0 on the diagonal of
Σ, as in Section 3.3.2.

Figure 3.8 displays the LaDynS cross precision estimate Ω̂12, the bootstrap p-values for the
entries of the desparsified cross-precision estimate Ω̃12, and the epochs of connectivity identified
by STAR at target FDR 5%. Time t = 0 corresponds to when the visual stimulus (the memory
cue) was turned off. One highly significant contiguous region of the precision matrix (p ≈ .01
or smaller), discovered by BH, is shown in Fig. 3.8. It corresponds to beta power in PFC being
correlated with earlier beta power in V4 (after conditioning on beta power at all other times and
lags), about 200 and 400 milliseconds post-stimulus (red blobs). It is important to keep in mind
that the sparse estimation method finds a relatively small number of large effects; smaller effects,
some of which may remain interesting, do not appear.

To better understand the lead-lag relationships, we used the estimated latent time-series to
compute a series of partial R2 values from the locally stationary state-space model, as described
in Section 3.2.4. We filtered LFP signals at beta frequency (18 Hz, Period: 0.055 sec.), and we
expect non-stationarity at a finer time scale than few periods is hard to detect. For each t0, we set
a local time window of length 0.2 sec., which encompasses less than 4 beta wave cycles. We used
τ1 = 0.015 and τ2 = 0.035 seconds. The null distribution was based on 200 trial permutations.
Fig. 3.9 displays two sets of partial R2 values, the first set, in panel (a), corresponds to the local
Granger causality of Z(t−.015:t−.035)

2 over Z(t)
1 , where Z1 was the latent time series for V4 and Z2

the latent time series for PFC. Thus, PFC leads V4 by about 45 milliseconds in these regressions.
Panel (b) displays partial R2 values of the cross-correlation at the opposite direction.

There is a large excursion of R2 above the null values in the PFC→ V4 plot and one in the
V4→ PFC plot. The excursion in the V4→ PFC plot centered around 400 ms, are consistent
with the results in Fig. 3.8. The excursion in the PFC→ V4 plot, combined with the excursion in
the V4→ PFC plot, shows mutually predictive activity.

These results are consistent with the idea that V4 responds strongly to visual stimuli and PFC
receives input from the visual processing stream, which includes V4, but we would expect the
directional influences to differ across time, during the task. Fig. 3.10 displays the estimated total
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(a) (b) (c)

Figure 3.8: LaDynS output and inference for experimental dataset. (a) LaDynS cross-
precision estimate Ω̂12. The light gray area shows the region of time considered (one area
leading the other by at most 0.1 second). (b) Bootstrap p-values for the de-sparsified estimate Ω̃12

(Eq. (3.18) with bootstrap simulation size B = 200; see Section 3.2.4). (c) Discovered regions
of cross-precision using STAR at nominal FDR 5%, suggesting that activity in PFC preceded
that in V4 immediately post-stimulus and around 0.1 seconds thereafter (blue blobs), and that
activity in V4 preceded that in PFC around time points 0.2 and 0.4 seconds post-stimulus (red
blobs). These four epochs had excursion test p-values of p = .024, p = .0015, p = .001 and
p < .0005, respectively. The two smaller blobs were not significant (p > 0.5) and are therefore
likely spurious.

(a) (b)

Figure 3.9: Estimated partial R2 from locally stationary state-space model. For Z1 → Z2,
partial R2 was computed corresponding to linear regression of Z(t)

1 against Z(t−0.015sec.:t−0.03sec.)
2

conditional to the other covariates, including Z2 at the other lags, for every time point t at sampling
rate 200 Hz. The black solid lines indicate the estimated partial R2 for (a) V4→ PFC and (b)
PFC→ V4. The pink shaded area shows 95 percentile area of null partial R2 under independence
between V4 and PFC, obtained from the permutation test.

beta power due to the latent time series, across time, for both PFC and V4.
The latent beta power in PFC is largest at the beginning of the task, then drops to a roughly

constant amplitude, while the latent beta power in V4 initially drops slightly but then starts to rise
just before 100 ms, peaks around 250 ms, and then declines but remains large. Taking Fig. 3.8b
and Fig. 3.10 together, these results show that starting a little after 0.3 sec, each of the two latent
beta power envelopes is able to predict the other, 0.03 to 0.06 sec in the future, suggesting the two
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Figure 3.10: Estimated variance of electrophysiological activity in V4 and PFC driven by
latent factors. The `2 norm of the factor loading vector β(t)

k (representing the total variance of
the data X(t)

k attributable to the latent time series at time t, see Eq. (3.7)) is plotted across time t
for V4 (blue) and PFC (orange).

areas are participating in bidirectionally linked beta oscillations.
It is also possible to get information from the normalized factor loadings, across the electrode

arrays, which are displayed in Fig. 3.11 for times t = 0.15 and t = 0.40 sec. (The loadings have
been divided by their maximal value across the array.) Most noticeably, the spatial pattern of
activity in PFC at 400 ms, compared with that at 150 ms, becomes more concentrated in the upper
left corner of the electrode array. Bootstrap confidence intervals suggest this change in spatial
pattern within PFC is not due solely to noise in estimation, see Fig. C.1b in the Supplementary
Material. Thus, apparently, the early and late periods of the task may be distinguished not only by
very different prediction effects but, in addition, by spatial shifts in lag-correlated activity. (An
animation over the complete timeline is available at github.com/HeejongBong/ladyns.)

3.5 Discussion
Motivated by the problem of describing interactions across a pair of brain regions, based on high-
dimensional neural recordings, we have provided a time-series extension of probabilistic CCA
together with a novel sparse estimation methodology. According to our Equation (3.7), each of the
two multivariate time series is driven by a single latent time series, with the cross-dependence of
these two latent time series representing cross-region interaction. According to Equation (3.8), the
latent bivariate time series is a discrete Gaussian process but its correlation matrix is unrestricted,
allowing for non-stationarity. The repeated trial structure enabled us to estimate the resulting
high-dimensional covariance matrix, by applying sparse estimation and inference methods. We
found, and displayed in Fig. 3.9, interesting directional relationships between PFC and V4, in beta
power, that appeared during late delay period, where the relationship was bidirectional. These
were based on partial R2 values, computed from the estimated covariance matrices, corresponding
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Figure 3.11: Factor loadings of V4 and PFC, spatially smoothed, normalized, and color coded
over the electrode coordinates (µm) at (left) the first bump of Fig. 3.9b (0.15 sec) and (right) the
second bump of Fig. 3.9b or the first bump of Fig. 3.9a (0.40 sec). Contours at fractions .25, .5,
and .75 of maximal power have been added.

to lagged regressions of one latent time series on the other. The analysis in Fig. 3.9 is in the spirit
of Granger causality, but differs from it by allowing for non-stationarity, so that we could obtain
the time-varying results.

In addition to making the analysis possible, the repeated trial structure suggests substantive
interpretation based on trial-to-trial variability. Neurophysiological experiments like the one
generating the data analyzed here take pains to make the experimental setting nearly the same on
each trial. The inevitable, relatively small fluctuations in the way the subject interacts with the
environment, together with changes in the subject’s underlying state (involving fluctuations in
motivational drive, for example), lead to observable fluctuations in behavior and in the recorded
neural activity. Although the network sources of trial-to-trial variability in the PFC and V4 data
are unknown, they produce the kind of correlated activity revealed in Fig. 3.9. To interpret it, we
acknowledge there could be some task-irrelevant, trial-varying pulses of inputs that drive beta
power in V4 and PFC, having just the right differential time lags to produce the correlated activity
picked up by the partial R2 values. Could such task-irrelevant pulses of activity change across
time, within repetitions of the task, in such a way as to produce, the peaks in Figs. 3.9a and 3.9b?
It is possible, but it would be surprising, especially when we consider contemporary ideas about
beta oscillations during working memory tasks (Miller et al., 2018) along with the well-identified
distinction between early and late visual processing, e.g., Yang et al. (2019). The alternative
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we mentioned, that PFC and V4 are involved, together, in goal-directed visual processing and
memory, with PFC influencing V4 early and the two areas acting bidirectionally later, seems a
credible possibility.

There are many ways to extend the ideas developed here. For band-pass filtered data, such
as those analyzed in Section 3.4, phase analysis (Klein et al., 2020) could be combined with
amplitude analysis. Multiple frequencies could be considered (along the lines of Gallagher et al.
(2017)), as well. In Bong et al. (2020a) we have described an extension of LaDynS, where the
within-region noise vectors εk were allowed to have general time series structure and the latent
time series driving each brain region were multidimensional. That brief report, however, does
not provide the details given here, nor does it include inferential procedures. Thus, an important
future step will be to show how inference can be carried out for the general models in Bong et al.
(2020a). A different direction for additional research would be to simplify the version of LaDynS
we have used here by imposing suitable spatiotemporal structure on the latent time series. While
we hope such approaches will be fruitful, we believe the general framework of LaDynS can be of
use whenever interest focuses on non-stationary interactions among groups of repeatedly-observed
multivariate time series.
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Chapter 4

Latent Dynamic Factor Analysis of
High-Dimensional Neural Recordings

This chapter is a collaboration with Zongge Liu, Zhao Ren, Eric Yttri, Matthew A.
Smith, Valérie Ventura, and Robert E. kass. This work is published at NeurIPS2020
(Bong et al., 2020b).

4.1 Introduction

New electrode arrays for recording electrical activity generated by large networks of neurons
have created great opportunities, but also great challenges for statistical machine learning (e.g.,
Steinmetz et al., 2018). For example, Local Field Potentials (LFPs) are signals that represent
the bulk activity in relatively small volumes of tissue (Buzsáki et al., 2012; Einevoll et al.,
2013), and they have been shown to correlate substantially with the BOLD fMRI brain imaging
signal (Logothetis et al., 2001; Magri et al., 2012b). Typical LFP data sets may have dozens to
hundreds of time series in each of two or more brain regions, recorded simultaneously across
many experimental trials. A motivating example in this paper is LFP recordings from a prefrontal
cortex (PFC) and visual area V4 during a visual working memory task. V4 has been reported to
retain higher-order information (e.g., color and shape) and attention in visual processing (Orban,
2008; Fries et al., 2001), while PFC is considered to exert cognitive control in working memory
(Miller and Cohen, 2001). Despite their spatial distance and functional difference, these regions
have been presumed to cooperate during visual working memory tasks. Various approaches have
been used to track the interaction among brain regions Adhikari et al. (2010); Jiang et al. (2015);
Hultman et al. (2018); Gallagher et al. (2017); Buesing et al. (2014). In particular, delay-specific
theta synchrony led by PFC has been discovered during visual memory tasks (Sarnthein et al.,
1998; Liebe et al., 2012).

We report here an extension of Gaussian process factor analysis (GPFA, Yu et al., 2009) to two
or more groups of time series, where the main interest is non-stationary cross-group interaction;
furthermore, the multivariate noise within groups can have both spatial covariation and non-
stationary temporal covariation. Here, spatial covariation refers to dependence among the time
series and, in the neural context, this results from the spatial arrangement of the electrodes, each
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of which records one of the time series. Our approach uses probabilistic CCA, but the framework
allows rich spatiotemporal dependencies. These generalizations come at a cost: we now have a
high-dimensional time series problem within each brain region together with a high-dimensional
covariance structure. We solve these high-dimensional problems by imposing sparsity of the
dominant effects, building on Bong et al. (2020c), which treats the high-dimensional covariance
structure in the context of observational white noise, and by incorporating banded covariance
structure as in Bickel and Levina (2008). We thus call our method Latent Dynamic Factor Analysis
of High-dimensional time series, LDFA-H.

In a simulation study, based on realistic synthetic time series, we verify the recovery of
cross-region structure even when some of our assumptions are violated, and even in the presence
of high noise. We then apply the method to 192 LFP time series recorded simultaneously from
both Prefrontal Cortex (PFC) and visual area V4, during a memory task, and find time-varying
cross-region dependencies.

4.2 Latent Dynamic Factor Analysis of High-dimensional time
series

We treat the case of two groups of time series observed, repeatedly, N times. Let X1
:,t ∈ Rp1 and

X2
:,t ∈ Rp2 be p1 and p2 recordings at time t in each of the two groups, for t = 1, . . . , T . As in Yu

et al. (2009), we assume that a q-dimensional latent factor Zk
:,t ∈ Rq drives each group, here, each

brain region, according to the linear relationship

Xk
:,t | Zk

:,t = µk:,t + βk · Zk
:,t + εk:,t, (4.1)

for brain region k = 1, 2, where µk:,t ∈ Rpk are mean vectors, βk ∈ Rpk×q are matrices of constant
factor loadings, and εk:,t ∈ Rpk are errors centered at zero (independently of the latent vectors Z).
We are interested in the pairwise cross-group dependencies of the latent vectors Z1

f,: and Z2
f,:, for

f = 1, . . . , q. As in (Bong et al., 2020c), we assume that the time series of these latent vectors
follows a multivariate normal distribution(

Z1
f,:

Z2
f,:

)
∼ MVN(0,Σf ), f = 1, . . . , q, (4.2)

where Σf describes all of their simultaneous and lagged dependencies, both within and between
the two vectors. We assume the N sets of random vectors (ε, Z) are independent and identically
distributed. Fig. 4.1a illustrates the dependence structure of this model. We let Pf be the
correlation matrix corresponding to Σf , and write its inverse as

Πf = P−1
f =

 Π11
f Π12

f

Π12>
f Π22

f

 (4.3)

where Π11
f and Π22

f are the scaled auto-precision matrices and Π12
f is the scaled cross-precision

matrix. We now assume finite-range partial auto-correlation and cross-correlation for (Z1
f,t, Z

2
f,t),
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(a)

(b)

Figure 4.1: LDFA-H model. (a) Dynamic associations between vectors X1
:,t and X2

:,s are summa-
rized by the dynamic associations between their associated 1D latent variables Z1

:,t and Z2
:,s. (b)

When a significant cross-precision entry is identified, e.g., the red star in the expanded view of Π12
f ,

its coordinates and distance from the diagonal indicate at what time in the experiment connectivity
between two brain areas occurs, and at what lead or lag. Here the red star is in the upper diagonal
of Π12

f , which means that, at this particular time, region 1 leads region 2, or Z1
f → Z2

f in short (a
non-zero entry in the lower diagonal would mean Z2

f → Z1
f ). We represent this association by the

red arrow on the right-most plot, with a lag of two units of time for illustration.

so that Π11
f , Π22

f and Π12
f in Equation (4.3) have a banded structure. Specifically, for k, l = 1, 2,

we assume there is a value hklf such that Πkl
f is a (2hklf + 1)-diagonal matrix. Because our goal is

to address the cross-region connectivity and lead-lag relationship, we are particularly interested in
the estimation of Π12

f for each latent factor f = 1, . . . , q. Note that the non-zero elements Π12
f,(t,s),

depicted as the red star in the expanded display within Fig. 4.1b, determine associations between
the latent pair Z1

f,: and Z2
f,:, which are simultaneous when t = s and lagged when t 6= s.

Finally, we model the noise in Eq. (4.1) as a Gaussian random vector

Vec(εk) = (εk:,1; εk:,2; . . . ; εk:,T ) ∼ MVN(0,Φk), k = 1, 2, (4.4)

where we allow Φk to have non-zero off-diagonal elements to account for within-group spatiotem-
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poral dependence. We assume Φk can be written in Kronecker product form

Φk = Φk
T ⊗ Φk

S , k = 1, 2, (4.5)

where Φk
T and Φk

S are the temporal and spatial components of Φk, as is often assumed for
spatiotemporal matrix-normal distributions, e.g., (Dawid, 1981). Although this is a strong
assumption, implying, for instance, that the auto-correlation of every Xk

i,: is proportional to Φk
T ,

we regard Φk as a nuisance parameter: our primary interest is Σf in Eq. (4.2). We also assume
an auto-regressive order at most hkε , so that ΓkT =

(
Φk
T
)−1 is a (2hkε + 1)-diagonal matrix. In our

simulation we show that we can recover Σf accurately even when the Kronecker product and
bandedness assumptions fail to hold.

The model in Equations (1)-(5) generalizes other known models. First, when q = 1, and
Z1 = Z2 remains constant over time, in the noiseless case (εk = 0), it reduces to the probabilistic
CCA model of Bach and Jordan (2005); see Theorem 2.2 of Bong et al. (2020c) Thus, model
(1)-(5) can be viewed as a denoising, multi-level and dynamic version of probabilistic CCA.
Second, when k = 1, the Gaussian processes are stationary, and the ε vectors are white noise,
(1)-(5) reduces to GPFA (Yu et al., 2009). Thus, (1)-(5) is a two-group, nonstationary extension
of GPFA that allows for within-group spatio-temporal dependence.

Identifiability and sparsity constraints Despite the structure imposed on Φk in Eq. (4.5),
parameter identifiability issues remain. Our model in Eqs. (4.1), (4.2) and (4.4) induces the
marginal distribution of the observed data (X1, X2):(

X1
:,1;X1

:,2; . . . ;X2
:,T

)
∼ N

(
(µ1

:,1;µ1
:,2; . . . ;µ2

:,T ), S
)

(4.6)

where S is the marginal covariance matrix given by:

S =

[
Φ1
T ⊗ Φ1

S 0
0 Φ2

T ⊗ Φ2
S

]
+

q∑
f=1

[
Σ11
f ⊗ (β1

fβ
1>
f ) Σ12

f ⊗ (β1
fβ

2>
f )

Σ12>
f ⊗ (β2

fβ
1>
f ) Σ22

f ⊗ (β2
fβ

2>
f )

]
. (4.7)

The family of parameters

θ{α
1,α2} =


Σ
{α1

1,α
2
1}

1 , . . . ,Σ
{α1
q ,α

2
q}

q , Φ1
S −

q∑
f=1

α1
fβ

1
fβ

1>
f , Φ2

S −
q∑

f=1

α2
fβ

2
fβ

2>
f ,

Φ1
T , Φ2

T , β
1, β2, µ1, µ2

 , (4.8)

where Σ
{α1
f ,α

2
f}

f =

{
Σf +

[
α1
fΦ

1
T 0

0 α2
fΦ

2
T

]}
, induce the same marginal distribution in Eq. (4.6),

for all α1, α2 ∈ Rq (notice that θ = θ{0,0} = {Σ1, . . . ,Σq, Φ1
S , Φ2

S , Φ1
T , Φ2

T , β
1, β2, µ1, µ2}

is the original parameter). Preliminary analysis of LFP data indicated that strong cross-region
dependence occurs relatively rarely. We therefore resolve this lack of identifiability by choosing
the solution given by maximizing the likelihood with an L1 penalty, under the assumption that the
inverse cross-correlation matrix Π12

f is a sparse (2h12
f + 1)-diagonal matrix.
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Latent Dynamic Factor Analysis of High-dimensional time series (LDFA-H) Given N si-
multaneously recorded pairs of neural time series {X1[n], X2[n]}n=1,...,N , the maximum penalized
likelihood estimator (MPLE) of the inverse correlation matrix of the latent variables solves

(
Π̂1, . . . , Π̂q

)
= argmin − 1

N

N∑
n=1

l
(
θ;X1[n], X2[n]

)
+

q∑
f=1

2∑
k,l=1

∥∥Λkl
f � Πkl

f

∥∥
1

s.t. ΓkT is (2hkε + 1)-diagonal,

(4.9)

where the log-likelihood is

l
(
θ;X1, X2

)
= − log detS − (X1

:,1 − µ1
:,1; . . . ;X2

:,T − µ2
:,T )>S−1(X1

:,1 − µ1
:,1; . . . ;X2

:,T − µ2
:,T ),

(4.10)
with S defined in Eq. (4.7), and the constraints are

Λkl
f,(t,s) =


∞, (t, s) : |t− s| > hklf ,

λf , (t, s) : 0 < |t− s| ≤ hklf , k 6= l,

0, otherwise.
(4.11)

for factor f = 1, . . . , q and brain region k = 1, 2. The first constraint forces the corresponding
Πkl
f,(t,s) to zero and thus imposes a banded structure for Πkl

f , and the second assigns the same
sparsity constraint λf on the off-diagonal elements of Π12

f . Finally, to make calibration of tuning
parameters computationally feasible, we set the bandwidth for the latent precisions and the noise
precisions within each region to a single value hauto, we set the bandwidth for the latent precisions
across regions to a value hcross, and we set the sparsity parameters to a value λcross, i.e.,

hkkf = hkε = hauto, h
12
f = hcross and λf = λcross,

for each factor f = 1, . . . , q and region k = 1, 2. The bandwidths are chosen using domain
knowledge and preliminary data analyses. We determine the remaining parameters λcross and q by
5-fold cross-validation (CV).

Solving Eq. (4.9) requires S−1. Because it is not available analytically and a numerical
approximation is computationally prohibitive, we solve Eq. (4.9) using an EM algorithm (Demp-
ster et al., 1977). Let θ(r) be the parameter estimate at the r-th iteration. We consider the data
{X1[n], X2[n]}n=1,...,N to be incomplete observations of {X1[n], Z1[n], X2[n], Z2[n]}n=1,...,N . In
the E-step, we estimate the conditional mean and covariance matrix of each {Z1[n], Z2[n]} with
respect to {X1[n], X2[n]} and θ(r). Given these sufficient statistics, the problem of computing the
MPLE decomposes into two separate minimizations of

1. the negative log-likelihood of Σf , w.r.t. the latent factor model (Eq. (4.2)) and

2. the negative log-likelihood of Φ1
S , Φ2

S , Φ1
T , Φ2

T , β
1, β2, µ1, µ2 w.r.t. the observation

model (Eqs. (4.1) and (4.4)).
With the noise correlation and latent factor correlation disentangled, the M-step reduces to easy
sub-problems. For example, the minimization with respect to Σf is a graphical Lasso problem
(Friedman et al., 2008) and the minimization with respect to Φk

S and Φk
T is a maximum likelihood
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estimation of a matrix-variate distribution (Dawid, 1981). We thus obtain an affordable M-step,
and alternating E and M-steps produces a solution to the MPLE problem.

We derive the full formulations in Appendix D.1. Its computational cost is inexpensive: a
single iteration of E and M-steps on our cluster server (with 11 Intel(R) Xeon(R) CPU 2.90GHz
processors) took in average less than 45 seconds, applied to the experimental data in Section 4.3.2.
A single fit on the same data took 42 iterations for around 30 minutes until P and {β1, β2}
converged under threshold 1e-3 and 1e-5, respectively. The code is provided at https://
github.com/HeejongBong/ldfa.

4.3 Results
One major novelty of our method is its accounting for auto-correlated noise in neural time series to
better estimate cross-region associations in CCA type analysis. This is illustrated in Section 4.3.1
based on simulated data. In Section 4.3.2, we apply LDFA-H to experimental data to examine the
lead-lag relationships across two brain areas and the spatial distribution of factor loadings.

4.3.1 LDFA-H retrieves cross-correlations even when noise auto-correlations
dominate

We simulated N = 1000 i.i.d. neural time series Xk of duration T = 50 from Eq. (4.1) for
brain regions k = 1, 2. The latent time series Zk were generated from Eq. (4.2) with q = 1
pair of factors and correlation matrix P1 depicted in Fig. 4.2a. The noise εk was taken to be the
N = 1000 trials of the experimental data analyzed in Section 4.3.2, first permuted to remove
cross-region correlations, then contaminated with white noise to modulate the strength of noise
correlation relative to cross-region correlations. The resulting temporal noise correlation matrices,
found by averaging correlations over all pairs of simulated time series, are shown in Fig. 4.2b,
for four levels of white noise contamination. The magnitudes of cross-region correlation and
within-region noise auto-correlation are quantified by the determinant of each matrix, known as
the generalized variance (Wilks, 1932); their logarithms are provided atop the panels in Fig. 4.2a
and Fig. 4.2b. Generalized variance ranges from 0 (identical signals) to 1 (independent signals).
Thus, larger negative values indicate stronger within-region noise correlation (see Appendix D.2).
Other simulation details are in Appendix D.2.

We note that the simulation does not satisfy some of the model assumptions in Section 4.2.
The noise vectors εk are not matrix-variate distributed as in Eqs. (4.4) and (4.5) and the derived
ΓkT does not satisfy a banded structure as in Eq. (4.9). Also, the latent partial auto-correlations
(Fig. 4.2) are not banded as assumed in Eq. (4.9).

We applied LDFA-H with q = 1 factor, hcross = 10, hauto equal to the maximum order of the
auto-correlations in the 2000 observed simulated time series, and λcross determined by 5-fold CV.
Fig. 4.3 shows LDFA-H cross-precision matrix estimates corresponding to the four level of noise
correlation shown in Fig. 4.2b. They closely match the true Π12

1 shown in the right most panel of
Fig. 4.2a.

We also applied five other methods to estimate cross-region connections in the simulated data.
They include the popular averaged pairwise correlation (APC); correlation of averaged signals
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(a)

(b)

Figure 4.2: Simulation settings. (a) (Left to right panels) True correlation matrix P1 for latent
factors Z1

1,: and Z2
1,: from model in Eq. (4.2); close-up of the cross-correlation matrix; correspond-

ing precision matrix Π1 = P−1
1 ; and close-up of cross-precision matrix Π12

1 (Eq. (4.3)). Matrix
axes represent the duration, T = 50 ms, of the time series. Factors Z1 and Z2 are associated in
two epochs: Z2 precedes Z1 by 7ms from t = 13 to 19ms, and Z1 precedes Z2 by 7ms from
t = 33 to 42ms. (b) Noise auto-correlation matrices (Eq. (4.5)) for pairs of simulated time series
at four strength levels. log det in (a) and (b) measure correlation strengths.

(CAS); and CCA (Hotelling, 1936), applied to the NT observed pairs of multivariate random vec-
tors {X1

:,t, X
2
:,t}n,t∈[N ]×[T ] to estimate the cross-correlation matrix between the canonical variables;

as well as DKCCA (Rodu et al., 2018) and LaDynS (Bong et al. (2020c)). The first four methods
do not explicitly provide cross-precision matrix estimates, so we display their cross-correlation
matrix estimates in Fig. 4.4, along with LDFA-H cross-correlation estimates in the last row. It is
clear that only LDFA-H successfully recovered the true cross-correlations shown in the second
panel of Fig. 4.2a, at all auto-correlated noise levels.

4.3.2 Experimental Data Analysis from Memory-Guided Saccade Task

We now report the analysis of LFP data in areas PFC and V4 of a monkey during a saccade task,
provided by Khanna et al. (2020). One trial of the experiment consisted of four stages: (i) fixation:
the animal fixated at the center of the screen; (ii) cue: a cue appeared on the screen randomly at
one of eight locations; (iii) delay: the animal had to remember the cue location while maintaining
eye fixation; (iv) choice: the monkey made a saccade to the remembered cue location. We focused
our analysis on the 500 ms delay period, when the animal both processed cue information and
prepared a saccade. LFP data were recorded for N = 1000 trials by two 96-electrode Utah arrays
implanted in PFC and V4, β band-passed filtered, down-sampled from 1 kHz to 100 Hz.

We applied LDFA-H using hauto = hcross = 10, corresponding to 100 ms (at 100 Hz); the
LFP β-power envelopes have frequencies between 12.5Hz to 30Hz, and hauto = 10 enables the
slowest filtered signal to complete one full oscillation period. The other tuning parameters were
determined by 5-fold CV over λcross ∈ {0.0002, 0.002, 0.02, 0.2} and q ∈ {5, 10, 15, 20, 25, 30},
yielding optimal values λcross = 0.02 and q = 10. We also regularize the diagonal elements, due
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Figure 4.3: Simulation results: LDFA-H cross-precision matrix estimates. Estimates of Π12
1 ,

shown in the right-most panel of Fig. 4.2a, using LDFA-H, for the four noise auto-correlation
strengths shown in Fig. 4.2b. LDFA-H identified the true cross-area connections at all noise
strengths.

to the otherwise excessively smooth β-power envelopes (see our code or Bong et al. (2020c) for
details). The fitted factors were ranked based on the Frobenius norms of their covariance matrices
‖Σf‖2

F ; norms are plotted versus f in decreasing order in Fig. D.1, and log10 ‖Σf‖2
F of the top

three factors are provided above each panel in Fig. 4.5a. The estimated cross-precison matrices
between two brain regions corresponding to the top three factors are shown in Fig. 4.5a. Note that
a positive entry in the precision matrix represents negative association between two regions. We
also summarized, for each factor f , the temporal information flow at time t from V4 to PFC and
to V4 from PFC with If,PFC→V 4(t) =

∑
t′>t

∣∣∣Π̂12
f,(t,t′)

∣∣∣ and If,V 4→PFC(t) = −
∑

t′<t

∣∣∣Π̂12
f,(t,t′)

∣∣∣,
respectively, where Π̂f is the inverse correlation matrix estimate in Eq. (4.9). Fig. 4.5d displays
smoothed If,PFC→V 4(t) and If,V 4→PFC(t) as functions of t for the top three factors. Lead-lag
relationships between V4 and PFC change dynamically over time, and the information flow tends
to peak either early in the delay period, when the animal must remember the cue, or later, when
it must make a saccade decision. The dominant first factor captures a flow from V4 to PFC
centered around 200 milliseconds into the task and a flow from PFC to V4 centered around 320
milliseconds. Factor loadings (subsampled over space) for the 96 V4 and PFC electrodes are
shown in Fig. 4.5b and Fig. 4.5c, respectively, for the top three factors (first three columns of the
estimate of βk in Eq. (4.9), with area k = 1 being V4 and k = 2 being PFC), arranged spatially
according to electrode positions on the Utah array. The factors have different spatial modes over
the physical space of the Utah array. Confirmation of these patterns would require additional data
and analyses.

4.4 Conclusion
To identify dynamic interactions across brain regions we have developed LDFA-H, a nonstationary,
multi-group extension of GPFA that allows for within-group spatio-temporal dependence among
high-dimensional neural recordings. We applied the method to data during a memory task and
found interesting, intuitive results. Although we treated the two-group case, and applied it
to interactions across two brain regions, several groups can be handled with straightforward
modifications. The approach could, in principle, be applied to many different types of time series,
but it has some special features: first, like all methods based on sparsity, it assumes a small
number of large effects are of primary interest; second, it uses repetitions, here, repeated trials,
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to identify time-varying dependence; third, because the within-group spatio-temporal structure
is not of interest, the method can remain useful even with some modest within-group model
misspecification.

Several restrictive assumptions of LDFA-H, as defined, were helpful here but could be
modified for other applications. One is the Kronecker-product form of the noise process. In
our simulation study, using a realistic scenario, we showed that LDFA-H can be effective even
when the Kronecker-product assumption is violated, but in other cases it may be problematic. In
some problems, space and/or time can be decomposed into windows within which the assumption
is more reasonable (see Leng and Tang, 2012; Zhou, 2014). Another potentially bothersome
assumption is independence between latent factors. It would be possible to include covariance
matrix parameters between the factors, but then the model will get computationally prohibitive
even with a moderate factor size. State-space models (Buesing et al., 2014; Linderman et al.,
2019; Yang et al., 2016) have potential but, to be comparable to LDFA-H, they would have to
accommodate nonstationary lead-lag behavior. Computationally efficient methods for identifying
time-varying relationships is a vital goal in the analysis of neural data from multiple brain regions.

We applied LDFA-H to LFP data. In contrast, GPFA has been applied mainly to neural spike
count data, and it is of course possible to apply LDFA-H to spike counts, as well. However, we
have been struck by the strong attenuation of effects due to Poisson-like noise, as discussed in
Vinci et al. (2018) and references therein. A version of LDFA-H built for Poisson-like counts,
or for point processes, could be the subject of additional research. It may also be advantageous
to model spatial dependence explicitly, perhaps based on physical distance between electrodes,
analogously to what was done in Vinci et al. (2018), and there may be, in addition, important
simplifications available in the temporal structure. It would also be helpful to have additional
statistical inference procedures for assessing effects. In the future, we hope to pursue these
possible directions, and refine the application of this promising approach to the analysis of
high-dimensional neural data.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.4: Simulation results: cross-correlation matrix estimates. Estimates of Σ12
1 under

four noise correlation levels using (a) averaged pairwise correlation (APC), (b) correlation of
averaged signal (CAS), (c) canonical correlation analysis (CCA, Hotelling (1936)), (d) dynamic
kernel CCA (DKCCA, Rodu et al. (2018)), (e) LaDynS (Bong et al. (2020c)), and (f) LDFA-
H. Only LDFA-H successfully recovered the true cross-correlation at all noise auto-correlation
strengths.
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(a)

(b)

(c)

(d)

Figure 4.5: Experimental data results for the top 3 factors. (a) Cross-precision matrices. Blue
represents positive precision matrix entries, corresponding to negative association. Factors have
different connectivity patterns over the experimental trials. log10 ‖Σf‖2

F , written atop the panels,
measures the strength of each factor. The first factor is more than 6 times larger than the second
and third, and displays activity in V4 leading PFC centered around 200 milliseconds and activity
in PFC leading V4 centered around 320 milliseconds post cue disappearance. This is also shown
in panel (d). (b,c) Factor loadings, smoothed and color coded, plotted on the electrode coordinates
(µm). Here, positivity is arbitrary, due to identifiability. Panels (b) and (c) display loadings
for the V4 and PFC arrays, respectively. The first factor has activity in V4 centered in two
distinct subregions of the array, while activity in PFC is more broadly distributed. (d) Dynamic
information flow in the directions V 4→ PFC (blue) and PFC → V 4 (orange).
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Chapter 5

Oscillating neural circuits: Phase,
amplitude, and the complex normal
distribution

This chapter is a collaboration with Konrad Urban, Josue Orellana and Robert E.
Kass. This work is submitted to Canadian Journal of Statistics and currently under
review.

5.1 Introduction

Oscillations in neural circuits have been observed under variety of circumstances, provoking much
speculation about their physiological function (Buzsaki and Draguhn, 2004; Fries, 2005). In the
past 15 years, the role of oscillations at particular frequencies has been the subject of considerable
experimental investigation, including the incorporation of causal manipulation (Cardin et al.,
2009). Of particular interest is the intriguing possibility that oscillations facilitate purposeful
communication across distinct parts of the brain, such as when an organism must retrieve and
hold items from memory or direct its visual attention to a particular location (Schmidt et al., 2019;
Miller et al., 2018), and this has led to the idea that alterations of circuit oscillations could indicate
brain dysfunction (Mathalon and Sohal, 2015).

From a statistical perspective, regardless of their mechanistic function, neural oscillations
can be considered useful indicators of coordinated activity across brain regions. The data we
have analyzed, such as that shown in Figure 5.1, come from experiments during which animals
are shown a visual stimulus, or they perform a task, repeatedly, across many trials, while neural
activity is recorded from electrodes inserted into the brain. If on each trial a pair of oscillatory time
series is observed, from two distinct brain regions, and the two oscillation phase measurements
rotate forward or backward together, exhibiting correlation, it is a strong indication that the two
brain regions are involved in an oscillating neural circuit. Because the phase measurements are
noisy angles, an immediate statistical question is, How can such a correlation be established?
A natural second question is, How can a graph be constructed to represent interactions across
multiple parts of the brain? Neurophysiological investigations often use many electrodes in each
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Figure 5.1: Three seconds of data from one electrode (a local field potential or LFP in blue) and a
band-pass filtered version of the data (orange).

of two or more specific brain regions, resulting in vectors of oscillating time series in each region,
which raises the further question, How can concise and interpretable summaries be used to assess
the covariation across groups of oscillating series? The purpose of this paper is to answer these
questions under the special circumstances relevant to the multielectrode neural context. We draw
results from the literature, including our own work, and also supply several novel observations,
re-formulations, and theoretical results, along with one new method. Although we have been
motivated by the analysis of neural data, we believe the paper will be of general statistical interest,
as it concerns a basic topic in time series analysis. We also hope it represents a suitable tribute to
Nancy Reid, whose work has often aimed to advance statistics through conceptual clarification
and consolidation.

For stationary time series, coherence is in some important respects a natural, frequency-based
analogue to correlation (Brillinger, 2001). Furthermore, graphical models can be constructed from
coherence in a manner analogous to Gaussian graphical models (Bach and Jordan, 2004), and
their applicability is extended by weakening the assumption from stationarity to local stationarity
(Ombao and Van Bellegem, 2008). In the context of task performance, however, many neural
signals exhibit striking non-stationarity (e.g. see the introduction to Kass et al. (2018)), and the
simplest way to avoid non-stationary effects is to pick a single time point of interest (or several
time points) during the task and analyze the covariation of phases across repeated trials. This may
be carried out using a circular analogue of Pearson correlation known as Phase-Locking Value
(PLV; see Section 5.5.2).

For more than two phases, a recently-developed class of methods uses models called torus
graphs (Klein et al., 2020). A torus graph is any member of the full exponential family with means
and cross-products (interaction terms) on a multidimensional torus, which is the natural home for
multivariate circular data because the product of circles is a torus. Due to their construction as
exponential families, torus graphs are probabilistic graphical models. In Section 2 we summarize
a few important results about torus graphs. One important consideration is that torus graphs, in
general, allow two kinds of association, called rotational, corresponding to positive association,
and reflectional, corresponding to negative association, and both are complex-valued. Thus,
unlike Pearson correlation, which involves a single real scalar, the general circular analogue of
correlation involves two complex numbers. As shown in Section 5.5.2, PLV becomes an analogue
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of Pearson correlation when reflectional association is absent and the individual circular variables
are uniformly distributed. The appearance of a complex measure for circular variables has its
origin in the complex representation of the unit circle, as the set of all points of the form eiθ.

Both coherence and PLV are used to measure association of phases in analyzing neural
oscillations. The power of an oscillatory signal is its squared amplitude, and as the amplitude
evolves across time it is usually called the power envelope for the oscillation. The association
of time-varying power in two or more brain regions is of interest, as evidence of association
would again (as with phase coupling) indicate joint participation in an oscillatory neural circuit.
At a single time point, the ordinary Pearson correlation serves as a measure of association of
amplitudes across repeated trials, but it is also possible to assess the association of the power
envelopes across time. In Section 5.3 we briefly summarize work we’ve done to address two
challenges: the large numbers of electrodes, which results in large numbers of times series, in
each brain region, together with non-stationarity. The method is based on a latent non-stationary
time series model.

Given our interest in associations for both phase and amplitude of neural oscillations, it may
seem natural to combine them by introducing a complex random vector model, because a complex
random variable can be written in polar coordinate form in terms of phase and amplitude (using the
general representation for a complex number z = Reiθ). We investigated the use of the complex
normal in this context, and provide its definition in Section 5.4. The covariance of two complex
random variables X and Y is Cov(X, Y ) = E[(X−EX)(Y − EY )], where z is the conjugate of
a complex number z. This covariance is itself a complex number. The variance then becomes a real
number and the complex correlation is defined as in Pearson correlation, by dividing the covariance
by the product of the two standard deviations. It is, thus, in general, complex-valued. The second
moments that appear in the complex normal include not only the complex covariances but also what
are called pseudo-covariances. For two complex random variables X, Y , the pseudo-covariance
is defined as PCov(X, Y ) = E[(X − EX)(Y − EY )]. The covariance and pseudo-covariance
for a complex random vector X are then defined analogously to the case of complex random
variables, using the Hermitian and transpose operators, Cov(X) = E[(X − EX)(X − EX)H ]
and PCov(X) = E[(X − EX)(X − EX)T ]. When its pseudo-covariance is zero, a complex
normal distribution is called proper. We show that, under an intuitive restriction on the covariance
structure, when we write a complex normal vector in polar coordinate form, the conditional
distribution of the vector of phases given the amplitudes forms a torus graph; when the complex
normal is proper the torus graph exhibits only rotational dependence; and when, in addition, the
mean of the complex normal is zero, the torus graph components are all uniformly distributed.
We also note that each of these restrictions on a complex normal family induces a full exponential
subfamily. These results are of interest as characterizations of torus graphs, and they shed some
light on potential implicit assumptions.

In practice, to extract a phase at a particular frequency either wavelet or Fourier methods
are used. This is usually called band-pass filtering, the name adopted in Fourier analysis (see
Figure 5.1). Here, though, the filtered signal must be complex-valued. Thus, if real-valued Fourier-
based band-pass filtering is applied, it must be followed by the additional step of conversion to the
corresponding complex-valued version, which is usually accomplished with the Hilbert transform
(see Appendix A).

Coherence is often considered to be the magnitude of the complex correlation at a particular
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frequency. This is a verbal description of its definition using the Cramér (or Cramér-Khinchin)
representation for a bivariate complex stationary process, as displayed in Section 5.5.1. One way
to understand this interpretation is to consider the result of filtering the signals with a complex
band-pass filter in a band (ω0− δ, ω0 + δ), for small δ. Ombao and Van Bellegem (2008) note that
the resulting narrow-band coherence is the correlation of the filtered signals. We can effectively
pass to the limit as δ → 0 to get the infinitesimal version that appears in the Cramér-Khinchin
representation. In a similar vein, we also note that a single-frequency bivariate process with
stochastic amplitudes and phases yields coherence as magnitude of complex correlation.

PLV, defined in Section 5.5.2, summarizes a sample of phase pairs by measuring the concen-
tration of the phase differences: the two phases are thereby considered highly associated when
their difference is nearly constant across trials. Unlike PLV, coherence is not solely a measure
of association of phases; because coherence is based on complex-valued correlation, it also
involves amplitudes. In Section 5.5.3, returning to the single-frequency bivariate process, under
the assumption that the amplitudes are independent of the phases and the phases are uniformly
distributed, we show that as long as the standard deviations of the amplitudes are small relative
to their means, coherence and PLV are essentially equivalent. On the other hand, this simplified
representation makes it easy to find situations when the two measures can disagree. We also
summarize the small literature on their comparison in the analysis of neural oscillations.

Although we had developed methods for analyzing both phase and amplitude associations
across brain regions, the use of complex correlation in coherence suggested the possibility of
analyzing neural oscillations by combining amplitude and phase through the complex normal
distribution. Because we often face large numbers of electrodes in each region we considered a
latent variable model. We specify the model in Section 5.6 and apply it to data in Section 5.7. The
data we analyze are local field potentials (LFPs), which are voltage recordings from electrodes
inserted into the brain; they are low-pass filtered (smoothed) and typically down-sampled to 1
KHz, so that each second of data has 1,000 observations. LFPs represent bulk activity near the
electrode (roughly within 150-200 microns), involving large numbers of neurons (Buzsáki et al.
(2012); Einevoll et al. (2013); Pesaran et al. (2018)).

Appendices A, B, and C contain, respectively, a note on the Hilbert transform, proofs of the
new theorems, and details of the fitting procedure for the complex latent variable model.

5.2 Torus Graphs
Figure 5.2 shows simulated, repeated observations from a pair of circular random variables X1

and X2. (The simulation displays features of real data, but mildly exaggerated to make our point
more vivid.) Most points lie along the diagonal, as might be expected of correlated data, but some
appear in the upper left corner of the figure. In the figure, X1 tends to be slightly ahead of X2, so
as X1 rotates past π and jumps to −π, X2 will not yet have gotten to π. This produces points in
the upper left corner of the plot, which is an indication that rectangular coordinates do not do a
good job of representing such data.

Instead of thinking about circular random variables on the segment [−π, π), we can consider
their representation as unit-length complex random variables Y1 = eiX1 and Y2 = eiX2 . The set of
such pairs is the product of two circles, a 2-dimensioal torus. In this representation the problem
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Figure 5.2: Scatter plot showing rotational (positive) dependence. The magenta-diamond marker
is at (0,0), black and blue markers are positioned along the diagonal band of points which looks
similar to bivariate normal data, except this pattern is not elliptical and the margins are pretty
uniform. Also the points near the red marker, on the upper-left corner, look surprising. They
appear because, in Cartesian (x, y) coordinates, the angles must jump from π to −π as they wrap
around the circular domain. Figure has been adapted from a figure in Klein et al. (2020).

Figure 5.3: The torus is the natural domain for a pair of circular random variables. Illustration of
both type of circular covariance in a torus graph bivariate density, with uniform marginal densities,
plotted side-by-side on the 2d-torus and cartesian plane. A. Positive rotational dependence. B.
Negative reflectional dependence. Figure has been adapted from a figure in Klein et al. (2020).

of weird points due to angular wrapping goes away: Figure 5.3 displays bivariate torus graph
densities plotted side-by-side on the torus and on the Cartesian plane.

Using the notations C = E(cos(X)) and S = E(sin(X)) the first moment for Y1 can be
obtained as

E[Y1] = E[eiX1 ]

= E[cos(X1) + i sin(X1)]

= E[cos(X1)] + i E[sin(X1)]

= C1 + iS1

= R1e
iµ1 ,
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where R1 =
(
C1

2
+ S1

2
)(1/2)

and µ1 = atan2(S1, C1). Similarly, E[Y2] = R2e
iµ2 . The usual

complex covariance is given by

Cov(Y1, Y2) = E
[
(Y1 − E[Y1])

(
Y2 − E[Y2]

)]
]

= E
[
Y1Y2

]
− E[Y1]E[Y2 ]

= E
[
eiX1e−iX2

]
−R1e

iµ1 R2e
−iµ2

= E
[
ei(X1−X2)

]
−R1R2e

i(µ1−µ2).

However, we also need the pseudo-covariances defined in the introduction, Section 1. In the con-
text of circular data, the covariance and pseudo-covariance are renamed rotational and reflectional,
the latter because it amounts to reflecting an axis:

Cov(Y1, Y2)rotational = Cov(Y1, Y2)

Cov(Y1, Y2)reflectional = PCov(Y1, Y2)

where

PCov(Y1, Y2) = E [(Y1 − E[Y1]) (Y2 − E[Y2])]

= E [Y1Y2]− E[Y1]E[Y2]

= E
[
eiX1eiX2

]
−R1e

iµ1 R2e
iµ2

= E
[
ei(X1+X2)

]
−R1R2e

i(µ1+µ2).

If rotational covariance measures clockwise-clockwise association, then reflectional covariance
measures clockwise-anticlockwise association. When a full exponential family is constructed on
the torus (we give the pdf below), both kinds of association must be considered. As a consequence,
association of two phases is, in general, represented not by a single scalar as in Pearson correlation,
which can represent both positive and negative dependence, but instead by 2 complex numbers
(Park and Park, 2018).

As shown in Figure 5.3, the two types of circular covariance measure complementary patterns
of linear dependence. The amplitude of the rotational covariance controls the width of the
association-band, and the phase of this complex number specifies the shift of this band along
the diagonal of the Cartesian plane that runs from bottom-left to top-right (Figure 5.3A). The
same notion applies to the reflectional covariance magnitude, but the band is positioned on the
other diagonal (Figure 5.3B). The presence of both types of covariation is possible and can lead to
concentrated marginals; however, in our experience with phases extracted from LPF neural data,
we have almost always observed exclusively rotational dependence. In addition, the marginals
are close to uniform. Rotational covariance, with uniform marginals, is the type of covariation
measured by PLV, and it also appears in models derived from dynamical systems of coupled
oscillators (Cadieu and Koepsell, 2010).

To define an exponential family on a torus with mean and covariance structure, the first and
second-order sufficient statistics are needed. Using two-dimensional rectangular coordinates
(involving cosines and sines), the first-order sufficient statistics are U1 = [cos(x1), sin(x1)]T and
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U2 = [cos(x2), sin(x2)]T and the second-order behavior is summarized by

U1U
T
2 =

[
cosx1 cosx2 cosx1 sinx2

sinx1 cosx2 sinx1 sinx2

]
.

We can then write a natural exponential family density in the form

p(x;η) ∝ exp

ηT1

[
cosx1

sinx1

]
+ ηT2

[
cosx2

sinx2

]
+ ηT12


cosx1 cosx2

cosx1 sinx2

sinx1 cosx2

sinx1 sinx2

 .
 (5.1)

Extending Equation (5.1) to d > 2, for an exponential family on a d-dimensional torus, yields

p(x;η) ∝ exp

 d∑
j=1

ηTj

[
cosxj
sinxj

]
+
∑
j<k

ηTjk


cosxj cosxk
cosxj sinxk
sinxj cosxk
sinxj sinxk


 . (5.2)

Based on simple trigonometric identities Klein et al. (2020) reparameterized this family in a more
interpretable form

p(x; η(φ)) ∝ exp

 d∑
j=1

φT
j

[
cosxj
sinxj

]
+
∑
j<k

φT
jk


cos(xj − xk)
sin(xj − xk)
cos(xj + xk)
sin(xj + xk)


 , (5.3)

which uses the same first and second order statistics previously seen in the definitions of complex
covariance. Klein et al. then defined a d-dimensional torus graph to be any member of the family
of distributions specified by Equations (5.2) or (5.3) (Klein et al., 2020).

Because a torus graph distribution is an exponential family, it follows that a pair of random
variables Xi and Xj will be conditionally independent given all other variables if and only if the
four pairwise interaction terms φij are zero. Thus, torus graphs define probabilistic graphical
models.

Torus graphs can uncover conditional dependence relationships, meaning pairwise dependence
edges that are still present after conditioning on the rest of the random variables in the model.
Conditional dependence is obscured with simple correlation measures such as PLV because for
each edge they only consider two random variables in isolation (see Figure 5.4, which displays
an example of conditional independence graphs from (Klein et al., 2020). The Torus graph
model as seen in Equation (5.3) is composed of three parameter groups: marginal concentrations,
rotational covariance, and reflectional covariance. Klein et al. showed that the sub-model with
only rotational covariance parameters does a good job of fitting phase angles extracted from neural
LFP data. In addition, they described how several alternative families of distributions can be
seen as special cases of torus graphs. They then applied their torus graph model to characterize a
network graph of interactions among recordings from four brain regions during a memory task.

In unpublished work, a hierarchical model based on torus graphs has been used to describe
large numbers of phase measurements made in each of several brain areas. This hierarchical
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Figure 5.4: Torus Graphs is able to recover conditional dependence graphs but PLV fails. The
generative model used simulated data using an independent model; see Klein et al. (2020) for
details. Figure has been adapted from a figure in Klein et al. (2020).

structure has the advantage of reducing the number of total parameters, which results in better
statistical inference when the amount of data is small in comparison to its dimensionality.

Because the normalization constant is intractable, some methods, including maximum like-
lihood, are not useful in fitting a torus graph. Klein et al. used the relatively recent approach
of score matching (Dawid and Musio (2014); Hyvärinen and Dayan (2005); Yu et al. (2016)) to
define a convex cost function that avoids the normalization constant. It is interesting to realize
that, although torus graphs provide interesting examples of exponential families that could have
been defined long ago, they would have been irrelevant to data analysis before the more recent
practical developments.

5.3 Latent Dynamical Model
In Figure 5.1, the band-pass filtered signal has a time-varying amplitude. This is a segment from
a single trial, and it is of interest to examine trial-to-trial covariation of signals from two brain
regions: if the amplitudes tend to get larger or smaller together, then whatever it is that makes one
region’s signals more powerful, also makes the other region’s signals more powerful, providing
evidence that the two regions are part of an oscillating circuit. Furthermore, it is possible that
an amplitude at one time point in one region is correlated with an amplitude at a slightly later
(lagged) time point in the other region. It is important to emphasize the non-stationarity of the
covariation, which can only be estimated accurately when the data come from a large number of
trials.

To assess time-varying interaction based on multiple such signals recorded from each region,
Bong et al. (2021) proposed a method of analyzing these smoothly-varying amplitude time series.
They developed a time-series generalization of a factor analysis model, using one latent factor
for each region. In their generalization, the two latent factors together formed a non-stationary
bivariate time series. In this model, the covariance matrix for the latent bivariate time series
summarizes the interactions, including all available time-lagged cross-correlations. They first
showed that maximum likelihood in this model (with a suitable identifiability constraint) produced
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the same solution as a well-known version of multiset canonical correlation analysis (CCA). The
method is thus is a time series generalization of probabilistic CCA. Bong et al. then considered
the problem of estimating the latent time series covariance matrix when there were substantial
numbers of electrodes, and thus time series, in each region. In the data they analyzed there were
96 electrodes in each region. Because of the non-stationarity, each combination of time point in
one region and time point in the other region could have its own unique correlation across trials,
which made the covariance matrix have a large number of free parameters. Bong et al. adapted
methods from the literature on high-dimensional inference to obtain a reasonable estimate, and
they studied its properties. They then showed how it produced interpretable and interesting results
when applied to their data.

5.4 The Complex Normal Distribution

A complex random vector X ∈ Cd is said to be complex normal if its real and imaginary parts
are jointly multivariate normal (Andersen et al., 1995). With m = E(X), Γ = Cov(X), and
C = PCov(X), we write this as X ∼ CNd(m,Γ, C). The distribution of X is said to be proper
if the pseudo-covariance matrix C is identically zero. Further, X is circularly symmetric, meaning
component-wise circularly symmetric so that its pdf satisfies p(X) = p(eiαX) for all α, if and
only if X is proper and has mean zero (Adali et al., 2011).

We can view the circularly symmetric, proper, and restriction-less complex normal distribu-
tions as full regular exponential families. We provide an abbreviated version of this theorem here;
for full details, please see the appendix.
Theorem 5.4.1. The family of complex normal distributions represented by CN(µ,Γ, C) forms
a full and regular exponential family. Additionally, the family of proper CN distributions
CN(µ,Γ, 0) as well as the family of circularly symmetric CN distributions CN(0,Γ, 0) both
form full and regular exponential families.

We can write the components of a complex normal random vector in polar coordinates and
form the conditional distribution of the vector of phases given their amplitudes. Under certain
parameter restrictions on a complex normal distribution, this conditional distribution forms a torus
graph. These restrictions avoid including second-moment terms, such as (cos Θi)

2, cos Θi sin Θi

and (sin Θi)
2, that do not contribute to interactions. In the following theorems, when X is a

complex random vector, we write the phase and amplitude of its ith component as the pair
(Θi, Ri) = (argXi mod 2π, |Xi|).
Theorem 5.4.2. Suppose X ∼ CNd(m,Γ, C) with (ReX, ImX) ∼ N(µ,Σ). If Σ−1

ii = Σ−1
i+d,i+d

for all 1 ≤ i ≤ d and Σ−1
i,i+d = 0 for all 1 ≤ i ≤ d, then Θ|R = r ∼ TG(η) where ηi =

ri[(Σ
−1µ)i, (Σ

−1µ)i+d] and ηij = −1
2
rirj[Σ

−1
i,j ,Σ

−1
i,j+d,Σ

−1
i+d,j,Σ

−1
i+d,j+d].

There exists another distribution in the literature, known as the multivariate Generalized
von-Mises (mGvM) distribution, which is a more general version of the TG distribution that
includes all second moment terms (Navarro et al., 2017). Navarro and colleagues showed that
given a 2D-dimensional normal distribution analogous to the complex normal, Θ|R = 1 is a
mGvM distribution without requiring any restrictions on the parameters of the original normal
distribution. In the appendix, we generalize this result for any conditional distribution Θ|R = r
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and then leverage this result to prove theorem 5.4.2 (see appendix section E.2.2).
We can also study the conditional distributions under the parameter restrictions C = 0 and

m = 0. Doing so allows us to get the following sequence of results under propriety and circular
symmetry.
Theorem 5.4.3. If X ∼ CNd(m,Γ, 0), so that the complex normal distribution of X is proper,
then Θ|R = r ∼ TG(η(φ)), as in Equation (3), where (φij)

3 = (φij)
4 = 0, with (φij)

k denoting
the kth component of φij .
Corollary 5.4.4. IfX ∼ CNd(m,Γ, 0), so that the complex normal distribution ofX is circularly
symmmetric, then Θ|R = r ∼ T (η(φ)) with the same restrictions as in theorem 5.4.3 and with
the additional restriction that φi = 0 for all i.

These theorems say that when the complex normal distribution is proper, the resulting torus
graph family has only rotational dependence. The absence of reflectional dependence is intuitive
from the definition in Section 5.2 of reflectional covariance as pseudo-covariance. Under circular
symmetry, because φi = 0, each component Θi|R = r is marginally uniform. We repeat that the
combination of uniformity and only rotational dependence is a particularly important special case,
partly because this is the case in which PLV becomes a circular analogue to Pearson correlation.
From a theoretical perspective, according to an argument given by Picinbono (1994), stationary
bandpass-filtered signals with sufficiently narrow bands are proper; this is a direct consequence of
the discussion of narrow-band signals given by Picinbono (1994). In the context of the particular
neural data application reported here, we provide empirical evidence for circularity in section
5.7.1.

5.5 Coherence and PLV

5.5.1 Coherence and Complex Correlation
Suppose we have two stationary signals X1(t), X2(t) with auto-covariance functions Σkk(t) =
Cov(Xk(t0 + t), Xk(t0)), for k = 1, 2, and a cross-covariance function Σ12(t) = Cov(X1(t0 +
t), X2(t)) (these definitions do not depend on t0 due to stationarity). The spectrum and cross-
spectrum of the signals are

fkk(ω0) =

∫ 1

0

Σkk(t)e
−i2πω0tdt

f12(ω0) =

∫ 1

0

Σ12(t)e−i2πω0tdt

and the coherency is

τ12(ω) =
f12(ω)√

f11(ω)f22(ω)
.

The coherency is complex-valued. The coherence is the magnitude of the coherency. The
Cramér-Khinchin decomposition (see Ch. 3 of Brémaud (2014)) is(

X1(t)
X2(t)

)
=

∫ 0.5

−0.5

exp(i2πωt)d

(
Z1(ω)
Z2(ω)

)
,
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where (Z1(ω0), Z2(ω0))> is a bivariate orthogonal increment random process. In this case, the
coherency between X1 and X2 at frequency ω0 is often considered, intuitively, as the complex-
valued correlation coefficient between the infinitesimal increments of Z1 and Z2 at ω0,

τ12(ω0) = Corr[dZ1(ω0), dZ2(ω0)].

A quick way to see that this characterization makes sense is to consider two time series oscillating
at a single frequency ω0,

X1(t) = A1 exp(i(Θ1 + 2πω0t)) and X2(t) = A2 exp(i(Θ2 + 2πω0t)) (5.4)

where Ak and Θk are random variables, which we think of as representing the trial-specific
amplitude and phase of Xk, respectively, for k = 1, 2. Then, the auto-covariance and cross-
covariance kernels are Σkk(t) = Var[Aie

iΘk ]ei2πω0t and Σ12(t) = Cov[A1e
iΘ1 , A2e

iΘ2 ]ei2πω0t.
The spectrum and cross-spectrum at frequency ω0 are

fkk(ω0) =

∫ 1

0

Var[Ake
iΘk ]ei2πω0te−i2πω0tdt = Var[Ake

iΘk ] for k = 1, 2, (5.5)

and

f12(ω0) =

∫ 1

0

Cov[A1e
iΘ1 , A2e

iΘ2 ]ei2πω0te−i2πω0tdt = Cov[A1e
iΘ1 , A2e

iΘ2 ], (5.6)

respectively. In this case, the coherency is the complex-valued correlation between X1(t) and
X2(t) for every t,

τ12(ω0) =
f12(ω0)√

f11(ω0)f22(ω0)
= Corr[A1e

iΘ1 , A2e
iΘ2 ] = Corr[X1(t), X2(t)]. (5.7)

As a generalization of the single-frequency case, it is possible to define “band coherency” over
a narrow band of frequencies. If a pair of signals are band-pass filtered, then the band-coherency
of the filtered signals is equal to the complex correlation of the filtered signals (Ombao and
Van Bellegem, 2008).

5.5.2 PLV as an Analogue of Pearson Correlation
For a sample of pairs of phase measurements (θ1n, θ2n), with n = 1, . . . , N , phase-locking value
is defined as

PLV =

∣∣∣∣∣ 1

N

N∑
n=1

ei(θ1n−θ2n)

∣∣∣∣∣ .
In Section 5.2 we noted that the rotational covariance of two random complex unit vectors
Y1 = eiXi and Y2 = eiX2 is

Cov(Y1, Y2)rotational = E
[
ei(X1−X2)

]
−R1R2e

i(µ1−µ2).
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When X1 and X2 are uniformly distributed, the means of Y1 and Y2 are equal to zero. Thus, in
this special case, R1 = R2 = 0 and we have

Cov(Y1, Y2)rotational = E
[
ei(X1−X2)

]
.

As a result, when the phases are written as random complex unit vectors, if there is no relectional
covariance and the random phases are individually uniformly distributed, PLV becomes a sample-
based (moment) estimator of their correlation. Klein et al. (2020) reached the same conclusion
starting from a general notion of circular correlation (in their supplementary section S7).

5.5.3 Comparing Measures of Covariation

Since PLV was first introduced, people have debated whether to use PLV, coherence, or amplitude
correlation to measure connectivity between oscillatory neural signals (e.g. Lachaux et al. (1999);
Lepage and Vijayan (2017); Srinath and Ray (2014); Lowet et al. (2016)). Our intention here
is to briefly review some of these arguments, and then show a few toy examples illustrating the
diverse ways in which various types of dependence are captured or not captured by amplitude
covariance, PLV, and complex covariance. As discussed in the previous section, for stationary
band-pass oscillatory signals, complex correlation is nearly equivalent to coherence.

Clearly, coherence depends on both the phase and amplitude of oscillatory signals. Dependence
on amplitude, however, has invited criticism of coherence as a pure representation of the degree
of synchrony among phases of oscillatory signals. Phase-locking value was introduced in part
to overcome the perceived limitations of this dependence (Lachaux et al., 1999). Later work
showed that particularly in non-stationary settings, estimators of coherence are not well-behaved
and can fail to accurately represent snchrony (Lowet et al., 2016). Other authors have criticized
coherence on the grounds that it can be biased by amplitude correlation (Srinath and Ray, 2014).
However, some investigators have responded to these criticisms by pointing out that coherence
may up-weight trials with larger amplitude oscillations, where information about phase is likely
to be stronger (Lepage and Vijayan, 2017).

It is helpful to reconsider the single-frequency signals Xk(t) = Ak exp(i(Θk + 2πω0t))
discussed in Section 5.5.1. Writing the purely angular factor in the rotational phase correlation
(which is the factor estimated by PLV) as

PLV12(ω) =
∣∣E[ei(Θ1−Θ2)]

∣∣,
in the case that (A1, A2) ⊥ (Θ1,Θ2), Equations (5.5), (5.6) give:

fkk(ω) = E[A2
k] = Var[Ak] + E[Ak]

2

|f12(ω)| = E[A1A2]
∣∣E[ei(Θ1−Θ2)]

∣∣ = (Cov[A1, A2] + E[A1] E[A2])PLV12(ω).

Letting ICV(Ak) := E[Ak]√
Var[Ak]

be the inverse coefficient of variation of Ak for k = 1, 2, the
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coherence, which is the absolute value of the complex correlation, at frequency ω is

τ12(ω) = |Corr[X1(t), X2(t)]| = Cov[A1, A2] + E[A1] E[A2]√
(Var[A1] + E[A1]2)(Var[A2] + E[A2]2)

PLV12(ω)

=
Corr[A1, A2] + ICV(A1)ICV(A2)√

(1 + ICV(A1)2)(1 + ICV(A2)2)
PLV12(ω).

Thus, in this independence case, if the amplitude is highly concentrated so that the ICV is large,
coherence and PLV will be roughly equal, but if ICV is small or moderate they will differ.

We can observe instances in which the PLV provides stronger evidence for an association than
complex correlation. For instance, assume that Θ1 ∼ Unif(0, 2π), Θ2 = Θ1 + ε (where ε is a von
Mises random variable which is concentrated around zero) and then let R1 = R2 = |Θ1 −Θ2|. In
this case, PLV is large, but complex covariance will be relatively small due to the specific form of
R1, R2.

Finally, there are numerous cases in which complex covariance (and thus coherence in the
stationary band-pass filtered case) may reveal information about associations not apparent by
examining either PLV of amplitude correlation. We show some of these in Table E.1 in Appendix
D. Overall, coherence and PLV can assess phase interaction differently, and in many applications
the situations discussed here may usefully inform the choice of one rather than the other.

5.6 A Latent Variable Model for the Proper Complex Normal
Distribution

We assume the data take the form of oscillating LFP recordings multiple electrodes embedded in
each of several brain regions. The goal is to assess the strength of the associations in the signals
across regions. We assume these signals have been band-pass filtered and thus, for each electrode
at each moment in time, we have a complex value containing amplitude and phase data. We select
a single time point at which we analyze the strength of cross-area interactions.

We develop a latent variable model to estimate a latent covariance matrix which assesses the
strength of cross-region interactions between brain areas. The latent variable model is based on a
series of proper complex normal distributions.

5.6.1 Model
We assume that there are R brain regions, and each brain region contains Dr electrodes (1 ≤ r ≤
R). We observe vectors of length Dr, denoted X(n),r, which represent the signals recorded from
each electrode in each brain region. Here n represents the nth trial and so 1 ≤ n ≤ N , where N
is the total number of trials in the experiment.

We assume that each brain region is represented by a single latent factor Z(n)
r which is a com-

plex random variable. Collectively for each trial a latent random vectorZ(n) = [Z
(n)
1 , Z

(n)
2 , ..., Z

(n)
R ]

is generated. Each latent factor is associated with a random vector of length Dr which consists of
the observed variables; we call this vector X(n),r. For the parameters Γ ∈ CR×R, βr ∈ CDr×1,
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and ηr ∈ CDr×Dr , we then assume the following generative model:

X(n),r = βrZ(n)
r + ε(n),r

Z(n) ∼ CN(0,Γ, 0)

ε(n),r ∼ CN(0, ηr, 0)

where the random vectors ε(n),r are noise terms specific to each latent factor. We require that
(βr)Hβr = 1 to ensure identifiability of the cross-region late covariances. The strength of the
cross-region associations is governed by the latent covariance matrix Γ.

Using basic properties of the complex normal distribution, we can write an explicit for-
mula for the marginal distribution of the vector X(n) = [X(n),1, X(n),2, . . . , X(n),R] which is the
concatenation of the observed signals for all electrodes in all regions. In particular, we have:

X(n) ∼ CN

0,


β1β

H
1 Γ11 + η1 β1β

H
2 Γ12 β1β

H
3 Γ13 . . .

β2β
H
1 Γ21 β2β

H
2 Γ22 + η2 β2β

H
3 Γ23 . . .

β3β
H
1 Γ31 β3β

H
2 Γ32 β3β

H
3 Γ33 + η3 . . .

. . . . . . . . . . . .

 , 0


Fitting the marginal likelihood directly is difficult due to the constraints on the structure of the
covariance matrix. Therefore, instead, we can fit the model via expectation maximization (see
appendix section E.3). If desired, we expect it would be possible to use the bootstrap to identify
significant entries in the latent covariance matrix.

5.6.2 Synthetic Data Example
We evaluate the latent variable model on some synthetic data. Let Zn ∼ CN(0,Γ, 0). We then
generate the data as X(r)

n = 1DrZ
r
n + γ

(r)
n where[

Reγn
Imγn

]
∼ N(0, I2D + UUT )

and U is a 2D-dimensional random vector such that Ui ∼ Unif(−1.0, 1.0).
The true latent covariance matrix, the empirical covariance matrix of the observed data, and

the estimated latent covariance matrix are shown in Figure 5.5. Since γ allows for interactions
between regions in a manner that is not dependent on Z, this example is not consistent with the
generative setting for the latent variable model. Nevertheless, the model appears to recover the
latent covariance structure.

5.7 Data Analysis
We apply the techniques we’ve discussed so far to a dataset of local field potential (LFP) data. We
use a publicly available dataset of LFP data from the Allen Institute (the dataset was described in
Siegle et al. (2021)). In the experiment, six electrode probes were simultaneously inserted into
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Figure 5.5: Covariance matrices for synthetic example described in the test. Real and complex
parts of the entries in the true Γ matrix used to generate the latent factors are shown in the top
row. Diagonal entries are omitted. In the middle row are the empirical covariance matrices of the
observed data. Finally, in the bottom row are the real and complex parts of the estimated latent
covariance matrix.

the mouse brain, with each probe targeting some area of visual cortex but also recording from
other regions. During the experiments, the mice were presented with a variety of visual stimuli;
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Figure 5.6: Elements of the covariance and pseudo-covariance matrices for LFP data. The
covariance matrices (denoted by Γ) were computed, along with the pseudo-covariance matrices
(denoted by C). These are plotted above, and appear to show generally larger entries for Γ than
for C.

here, we focus on presentations of drifting grating stimuli, which appear as bars moving across a
screen in the mouse’s field of view. In the interest of utilizing as much data as possible, we ignore
differences in the direction and size of the stimuli presented. This gives us 630 trials of data.

The experimenters marked every electrode with the anatomical brain area in which it resided
during the experiment. We observed an oscillation at 6.5Hz in a variety of these areas. Therefore,
we band-pass filtered the LFP signal and then used the Hilbert transform to recover the analytic
signal. We selected a single time point well after the stimulus disappears from the screen. We
then have a single complex value for each electrode, which is the basis for our analysis.

5.7.1 Analysis of Propriety

We first analyze the dataset to show that our assumption of propriety is reasonable. Recall that
the complex normal distribution utilizes covariance (Γ) and pseudo-covariance (C) matrices,
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Figure 5.7: An example of the application of the latent variable model to LFP data from the
Allen Institute is shown here. The entries in the covariance matrices are arranged consecutively
according to their vertical position in the inserted probe. The sample covariance matrices for the
real part of the data and the covariance between the real and imaginary parts of the data are shown
on the left. Then, the latent variable model was fit to the data, and the estimated latent covariance
matrix is denoted by Γ (diagonal entries are omitted). Electrodes are labeled by the anatomical
region in which they resided during the experiment.

the second of which is zero for a proper distribution. In Figure 5.6, we plot the covariance and
pseudo-covariance matrices of our data. We observe that entries from the pseudo-covariance
matrices are generally much smaller than those of the covariance matrices, which is consistent
with propriety being a reasonable assumption.

5.7.2 Application of the Latent Variable Model

We then applied the latent variable model to this dataset. For all analyses, we used one latent
variable per brain area we analyze. Each brain area has multiple electrodes embedded that record
the LFP signals; these signals are the observed variables in our model. In Figures 5.7 and 5.8 we
display the empirical covariance matrices of the observed data and the latent covariance matrices
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Figure 5.8: This figure was obtained using the same setup as in figure 5.7, except that electrodes
were obtained from multiple probes and therefore are only ordered by vertical position within
each region.

estimated by our model.
In Figure 5.7, we show data from only a single probe. The elements of the covariance matrices

are arranged by their vertical position in the inserted probe. In the real part of the estimated latent
covariance matrix, we can observe a relatively strong division of the regions into two groups,
based on positive covariances within groups and negative covariances across groups. One group
is composed of the subiculum and the primary visual cortex, and a second group is composed of
the dentate gyrus in the hippocampus and thalamus, among other regions. The imaginary part of
the covariance matrix doesn’t appear to show any sharp distinctions between areas.

In Figure 5.8 we show something similar, except that we include electrodes from multiple
probes across multiple visual regions, as well as the two hippocampal regions; namely, the dentate
gyrus and CA1 region. Once again, in the real part of the latent covariance matrix, we observe the
strongest pattern: namely, the four visual areas appear to be positively correlated with each other
and negatively correlated with the hippocampal regions, which are themselves highly correlated.
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Appendix A

Thesis flow chart with model details.
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Probabilistic CCA (Bach and Jordan, 2005)
Xk = µk + βkZ + εk, εk

i.i.d.∼ MVN(0,Φk), k = 1, 2
where Z ∼ N(0, 1)

Probabilistic CCA (Section 3.2.2)
Xk = µk + βkZk + εk, εk

i.i.d.∼ MVN(0,Φk), k = 1, 2

where
(
Z1

Z2

)
∼ MVN

(
0,

(
1 σ
σ 1

))

LaDynS (Chapter 3)
X

(t)
k = µ

(t)
k + β

(t)
k Z

(t)
k + ε

(t)
k , ε

(t)
k

i.i.d.∼ MVN(0,Φ
(t)
k ),

k = 1, 2, t = 1, . . . , T
where (Z

(1)
1 , Z

(2)
1 , . . . , Z

(T )
2 ) ∼ MVN(0,Σ),

diag(Σ) = 1, and Ω = Σ−1 is sparse.

Complex-variate latent factor model (Chapter 5)
Xk = βkZk + εk, εk

i.i.d.∼ CN(0, ηk, 0),
k = 1, 2, . . . , R

where (Z1, Z2, . . . , ZR) ∼ CN(0,Γ, 0),
εk ∈ Cdk , and Zk ∈ C.

Matrix-variate graphical Model (Chapter 2)
X(k,l) indep∼ MVN(0,Σ(S,l) ⊗ Σ(T ,l))

Local stationary state-space model (Section 3.2.4)
Z(t) =

∑p
i=1 aiZ

(t−i) + ε
(t)
Z , ε

(t)
Z

i.i.d.∼ N(0, σ2)

GPFA (Yu et al., 2009)
X(t) = µ(t) +

∑q
f=1 β

(t)
f Z

(t)
f + ε(t), ε(t)

i.i.d.∼ MVN(0,Φ),
t = 1, . . . , T

where (Z
(1)
f , . . . , Z

(T )
f ) ∼ MVN(0,Σf ),

Σ
(t,s)
f = σ2

f exp(− (t−s)2
2τ2f

) + σ2
f,01{t=s}, and Φ is diagonal.

LDFA-H (Chapter 4)
X

(t)
k = µ

(t)
k +

∑q
f=1 β

(t)
k,fZ

(t)
k,f + ε

(t)
k , (ε

(1)
k ; . . . ; ε

(T )
k )

indep∼ MVN(0,Φk,S ⊗ Φk,T ),
k = 1, 2, t = 1, . . . , T

where (Z
(1)
1,f , Z

(2)
1,f , . . . , Z

(T )
2,f )

indep∼ MVN(0,Σf ), diag(Σf ) = 1, and Ωf = Σ−1
f is sparse

for f = 1, . . . , q.

Figure A.1: Flow chart of research projects in this dissertation. White boxes code for existing
methods by other researchers, orange boxes for completed projects in this thesis. Arrows indicate
conceptual and methodological dependence.
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Appendix B

Appendix for Chapter 2

B.1 Additional Figures

Figure B.1: ROC curve under 3 graph types with n = 5, q = 30 and d = 5 at tuning parameters
λ ∈ (1, 0.01, 1e− 4, 1e− 6). Our method is consistently better regardless of tuning parameters.
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B.2 Proofs

B.2.1 Preliminary Lemmas

Here we introduce several lemmas that will help us prove propositions and theorems later. To
apply the classical techniques and results in penalized regression analyses, we need to address the
dependency among X(S,l)

t ’s. To do so, we use the fact that, for k = 1, . . . , nl,

p∑
t=1

X
(k,l)
t X

(k,l)>

t =

p∑
t=1

λ
(T ,l)
t W

(k,l)
t W

(k,l)>
t (B.1)

where W (k,l)
t

i.i.d.∼ N(0,Σ(S,l)) for all t = 1, . . . , p. We further let ξ(k,l)
ti = W

(k,l)
ti −W (k,l)

t,· β
(S,l)
·,i so

that
p∑
t=1

ε
(S,k,l)
t X

(k,l)>

t =

p∑
t=1

λ
(T ,l)
t ξ

(k,l)
t W

(k,l)>
t ,

p∑
t=1

ε
(S,k,l)
t ε

(S,k,l)>
t =

p∑
t=1

λ
(T ,l)
t ξ

(k,l)
t ξ

(k,l)>
t ,

(B.2)

and ξ(k,l)
t

i.i.d.∼ N(0,Φ(S,l)) across t = 1, . . . , p and k = 1, . . . , nl.
The subsequent lemmas follow the application to the above equations of sub-exponential

concentration inequalities, which could be found in mathematical statistics literature such as
Vershynin (2018). The proofs for the lemmas are given in Appendices B.3.1 to B.3.4.
Lemma B.2.1.

P

[
max
l=1,...,m

∥∥∥∥ 1

nlp
X(S,l)>X(S,l) − Σ(S,l)

∥∥∥∥
∞
≥ C(κ1, κ3)

√
log(qmn0p)

n0p

]
≤ (qmn0p)

−1/2. (B.3)

Lemma B.2.2.

P

max
i,j:j 6=i

1

n0p

 m∑
l=1

( √
nlp

‖X(S,l)
·,j ‖2

ε
(S,l)>
·,i X

(S,l)
·,j

)2
1/2

≥ C(κ1, κ3)

√
m+ log(qmn0p)

n0p


≤ (qmn0p)

−1/2.

(B.4)

and

P

 max
i=1,...,q

1

n0p

 m∑
l=1

( √
nlp

‖X(S,l)
·,i ‖2

ε
(S,l)>
·,i X(S,l)β

(S,l)
·,i

)2
1/2

≥ C(κ1, κ3)

√
m+ log(qmn0p)

n0p


≤ (qmn0p)

−1/2.
(B.5)
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Lemma B.2.3.

P

[
max
l=1,...,m

max
i,j:j 6=i

∣∣∣∣ 1

nlp
ε

(S,l)>
·,i X

(S,l)
·,j

∣∣∣∣ ≥ C(κ3)

√
log(qmn0p)

nlp

]
≤ (qmn0p)

−1/2, (B.6)

and

P

[
max
l=1,...,m

max
i=1,...,q

∣∣∣∣ 1

nlp
ε

(S,l)>
·,i X(S,l)β

(S,l)
·,i

∣∣∣∣ ≥ C(κ3)

√
log(qmn0p)

n0p

]
≤ (qmn0p)

−1/2. (B.7)

Lemma B.2.4.

P

[
max
l=1,...,m

∥∥∥∥ 1

nlp
ε(S,l)>ε(S,l) − Φ(S,l)

∥∥∥∥
∞
≥ C(κ3)

√
log(qmn0p)

n0p

]
≤ (qmn0p)

−1/2. (B.8)

B.2.2 Proof of Theorem 2.3.1
Based on the optimality of the group Lasso estimate in Eq. (2.31), we immediately have

1

2n0p

m∑
l=1

(
‖X(S,l)
·,i −X(S,l)β̂

(S,l)
·,i ‖2

2 − ‖X
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2

)
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∑
j:j 6=i

(∥∥∥β(S,·)
ji

∥∥∥
2
−
∥∥∥β̂(S,·)

ji

∥∥∥
2

) (B.9)

for every i = 1, . . . , q. We notice that the left-hand side satisfies

1

2n0p

m∑
l=1
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‖X(S,l)
·,i −X(S,l)β̂
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2
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1
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·,i ‖2

2 − 2(X(S,l)∆
(S,l)
·,i )>ε

(S,l)
·,i

)
.

(B.10)

For the first term,

1

2n0p
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‖X(S,l)∆
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1
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∆
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∆
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(B.11)
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where the last inequality resorts to Assumptions 1 and 3. To provide a further lower-bound, we
use the fact based on Lemma B.2.1 that

1

κ3

m∑
l=1

‖∆(S,l)
·,i ‖2

2 ≥ C(κ3)
∑
j:j 6=i

‖∆(S,·)
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2 (B.12)

and
m∑
l=1

∆
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∆
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∆
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2
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(B.13)

uniformly over i = 1, . . . , q with probability at least 1− (qmn0p)
−1/2. For the second term,
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(B.14)

uniformly over i = 1, . . . , q with probability at least 1− (qmn0p)
−1/2 where the last inequality is

due Lemma B.2.2. For the right-hand side of Eq. (B.9),
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∑
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On the one hand, because 1
2n0p

∑m
l=1‖X(S,l)∆

(S,l)
·,i ‖2

2 ≥ 0 a.s., Eqs. (B.10), (B.14) and (B.15) earn
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uniformly over i = 1, . . . , q with probability at least 1− C(qmn0p)
−1/2. Due to Assumption 4,√

m+log(qmn0p)
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uniformly over i = 1, . . . , q with probability at least 1− C(qmn0p)
−1/2 for sufficiently large n0.

On the other hand, Eqs. (B.10) to (B.15) earn
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with probability at least 1 − C(qmn0p)
−1/2 for sufficiently large n0 due to Eq. (B.17), and
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uniformly over i = 1, . . . , d with probability at least 1− 2(qmn0p)
−1/2 for a sufficiently large n0.

As a result, with a sufficiently large n0 and the same probability,
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uniformly over i = 1, . . . , d, and
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In addition, due to Eq. (B.17), under the same event,

max
i

∑
j:j 6=i

∥∥∥∆
(S,·)
ji

∥∥∥
2
≤ C max

i

∑
j:βji 6=0

∥∥∥∆
(S,·)
ji

∥∥∥
2

≤ C
√
dmax

i

√∑
j:j 6=i

∥∥∥∆
(S,·)
ji

∥∥∥2

2
≤ C(κ1, κ3) d

√
m+ log(qmn0p)

n0p
.

(B.23)

Last, it follows Eqs. (B.9) and (B.10) that
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under the same event.
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B.2.3 Proof of Proposition 2.3.2
For i, j ∈ {1, . . . , q}, let
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and
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Then, for i = j,
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These error terms drive ρ̂(S,l)
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(S,l)
jj β

(S,l)
ji + φ̃

(S,l)
ij + φ̃

(S,l)
ii β

(S,l)
ij + φ̃

(S,l)
jj β

(S,l)
ji√

Φ̂
(S,l)
ii Φ̂

(S,l)
jj

+ Φ
(S,l)
ij

 1√
Φ

(S,l)
ii Φ

(S,l)
jj

− 1√
Φ̂

(S,l)
ii Φ̂

(S,l)
jj



(B.29)

We notice that

Θ
(S,l)
ij =

φ̃
(S,l)
ij + φ̃

(S,l)
ii β

(S,l)
ij /2 + φ̃

(S,l)
jj β

(S,l)
ji /2√

Φ
(S,l)
ii Φ

(S,l)
jj

=
φ̃

(S,l)
ij + φ̃

(S,l)
ii β

(S,l)
ij + φ̃

(S,l)
jj β

(S,l)
ji√

Φ
(S,l)
ii Φ

(S,l)
jj

+
Φ

(S,l)
ij

(
Φ

(S,l)
ii φ̃

(S,l)
jj + Φ

(S,l)
jj φ̃

(S,l)
ii

)
2Φ

(S,l)
ii Φ

(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj

,

(B.30)
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because β(S,l)
ij = −Φ

(S,l)
ij /Φ

(S,l)
ii . Hence, the remainder term turns out to be

O
(S,l)
ij =

Φ
(S,l)
ij

 1√
Φ

(S,l)
ii Φ

(S,l)
jj

− 1√
Φ̂

(S,l)
ii Φ̂

(S,l)
jj

− Φ
(S,l)
ij

(
Φ

(S,l)
ii φ̃

(S,l)
jj + Φ

(S,l)
jj φ̃

(S,l)
ii

)
2Φ

(S,l)
ii Φ

(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj


+
(
φ̃

(S,l)
ij + φ̃

(S,l)
ii β

(S,l)
ij + φ̃

(S,l)
jj β

(S,l)
ji

) 1√
Φ̂

(S,l)
ii Φ̂

(S,l)
jj

− 1√
Φ

(S,l)
ii Φ

(S,l)
jj


+
φ̂

(S,l)
ij + φ̂

(S,l)
ii β

(S,l)
ij + φ̂

(S,l)
jj β

(S,l)
ji√

Φ̂
(S,l)
ii Φ̂

(S,l)
jj

(B.31)

For φ̂(S,l)
ii ’s,

max
i

m∑
l=1

|φ̂(S,l)
ii | ≤max

i

m∑
l=1

|‖ε̂(S,l)·,i ‖2
2 − ‖ε

(S,l)
·,i ‖2

2|

≤C(κ3) max
i

m∑
l=1

1

2n0p

∥∥∥ε̂(S,l)·,i − ε
(S,l)
·,i

∥∥∥2

2

≤C(κ1, κ3) d
m+ log(qmn0p)

n0p

(B.32)

with probability at least 1 − C(qmn0p)
−1/2 for a sufficienty large n0, where the probability

inequality at the last line is the result of Theorem 2.3.1. For φ̃(S,l)
ii ’s,

max
i

max
l
|φ̃(S,l)
ii | ≤ C(κ1, κ3)

√
log(qmn0p)

n0p
(B.33)

with probability at least 1− (qmn0p)
−1/2 as a result of Lemma B.2.4. Assumption 4 implies that

maxi Φ̂
(S,l)
ii ≤ C(κ1, κ3), so both φ̂(S,l) and φ̃(S,l) are bounded. As a result, it is easily seen that,

with the same probability,

|
m∑
l=1

O
(S,l)
ij | ≤ C(κ1, κ3) max



∑
l

|φ̂(S,l)
ii |,

∑
l

|φ̂(S,l)
ij |,

∑
l

|φ̂(S,l)
jj |,∑

l

|φ̃(S,l)2
ii |,

∑
l

|φ̃(S,l)
ii φ̃

(S,l)
jj |,

∑
l

|φ̃(S,l)2
jj |,∑

l

|φ̃(S,l)
ii φ̃

(S,l)
ij |,

∑
l

|φ̃(S,l)
jj φ̃

(S,l)
ij |.


(B.34)
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For example, the Taylor’s theorem gives

Φ
(S,l)
ij

 1√
Φ

(S,l)
ii Φ

(S,l)
jj

− 1√
Φ̂

(S,l)
ii Φ̂

(S,l)
jj

− Φ
(S,l)
ij

(
Φ

(S,l)
ii φ̃

(S,l)
jj + Φ

(S,l)
jj φ̃

(S,l)
ii

)
2Φ

(S,l)
ii Φ

(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj

=
Φ

(S,l)
ij

(
Φ̂

(S,l)
ii Φ̂

(S,l)
jj − Φ

(S,l)
ii Φ

(S,l)
jj − Φ

(S,l)
ii φ̃

(S,l)
jj − Φ

(S,l)
jj φ̃

(S,l)
ii

)
2Φ

(S,l)
ii Φ

(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj

+ Φ
(S,l)
ij

∫ Φ
(S,l)
ii Φ

(S,l)
jj

Φ̂
(S,l)
ii Φ̂

(S,l)
jj

3

4t5/2
(Φ

(S,l)
ii Φ

(S,l)
jj − t)2dt

≤C(κ1, κ3, κ4) max

Φ̂
(S,l)
ii Φ̂

(S,l)
jj − Φ

(S,l)
ii Φ

(S,l)
jj − Φ

(S,l)
ii φ̃

(S,l)
jj − Φ

(S,l)
jj φ̃

(S,l)
ii ,(

Φ
(S,l)
ii Φ

(S,l)
jj − Φ̂

(S,l)
ii Φ̂

(S,l)
jj

)2

 ,

(B.35)

which is easily fit into Eq. (B.34).
For the second order terms of φ̃(S,l) in Eq. (B.34), we recognize that they are sub-Weibull ran-

dom variables and use the corresponding concentration inequality (Kuchibhotla and Chakrabortty,
2018) formulated in the following lemma. See Appendix B.3.5 for the derivation.
Lemma B.2.5.

P


max
i,j

max

{
m∑
l=1

∣∣∣φ̃(S,l)
ii φ̃

(S,l)
jj

∣∣∣, m∑
l=1

∣∣∣φ̃(S,l)
ii φ̃

(S,l)
ij

∣∣∣}

≥ C(κ1, κ3)
m+ log2(qmn0p)

n0p

 ≤ (qmn0p)
−1/2. (B.36)

For the linear terms of φ̂(S,l), we use the following upperbound. See Appendix B.3.6 for the
proof.
Lemma B.2.6.

P

[
max
i,j

m∑
l=1

∣∣∣φ̂(S,l)
ij

∣∣∣ ≥ C(κ1, κ3) d
m+ log(qmn0p)

n0p

]
≤ C(qmn0p)

−1/2. (B.37)

The desired result is a straightforward result of the two above lemmas.

B.2.4 Proof of Proposition 2.3.4

Let ΘE = 1√
m

∑m
l=1

√
nlpΘ

(S,l)
E , and OE = 1√

m

∑m
l=1

√
nlpO

(S,l)
E , where Θ

(S,l)
E and O(S,l)

E are the

collections of Θ
(S,l)
ij and O(S,l)

ij for (i, j) ∈ E, respectively. For any x > 0 and δ > 0,

P[‖T̂E − TE‖∞ > x] ≤ P[‖ΘE‖∞ > x− δ] + P[‖OE‖∞ > δ]

≤ P[‖Z‖∞ > x− δ] +KS∞(ΘE, Z) + P[‖OE‖∞ > δ]

= P[‖Z‖∞ > x] + P[x ≥ ‖Z‖∞ > x− δ] +KS∞(ΘE, Z) + P[‖OE‖∞ > δ],

(B.38)
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where KS∞(ΘE, Z) := supx>0|P[‖ΘE‖∞ > x] − P[‖Z‖∞ > x]| is the Kolmogorov-Smirnov
distance between ‖ΘE‖∞ and ‖Z‖∞. Similarly,

P[‖T̂E − TE‖∞ > x] ≥ P[‖ΘE‖∞ > x+ δ]− P[‖OE‖∞ > δ]

≥ P[‖Z‖∞ > x+ δ]−KS∞(ΘE, Z)− P[‖OE‖∞ > δ]

= P[‖Z‖∞ > x]− P[x+ δ ≥ ‖Z‖∞ > x]−KS∞(ΘE, Z)− P[‖OE‖∞ > δ].

(B.39)

Therefore we conclude that

sup
x>0

∣∣∣P[‖T̂E − TE‖∞ > x]− P[‖Z‖∞ > x]
∣∣∣

≤ KS∞(ΘE, Z) + sup
x>0

P[x+ δ ≥ ‖Z‖∞ ≥ x− δ] + P[‖OE‖∞ > δ].
(B.40)

We use the anti-concentration inequality of the supremum norm of Gaussian random vectors with
mean zero (Corollary 1, Chernozhukov et al., 2015) and the fact that

S(i,j),(i,j) =
1

m

m∑
l=1

‖Σ(T ,l)‖2
F

p
(1− ρ(S,l)2

ij )2 ≥ C(κ3) (B.41)

to control the second term:

sup
x>0

P[x+ δ ≥ ‖Z‖∞ ≥ x− δ] ≤ C(κ3)δ
√

log|E|, (B.42)

for a sufficiently small δ. Setting δ = C(κ1, κ3)dm+log2(qmn0p)√
mn0p

, which converges to 0 as n→∞
due to Assumption 4, Proposition 2.3.2 provides an upperbound over the size of the last term.

Now it suffices to derive a probabilistic upperbound for KS∞(∆∞, Z). We recall that each
element of ΘE is

Θij =
1√
m

m∑
l=1

√
nlpΘ

(S,l)
ij

=
1√
m

m∑
l=1

√
nlp

 φ̃
(S,l)
ij√

Φ
(S,l)
ii Φ

(S,l)
jj

−
Φ

(S,l)
ij φ̃

(S,l)
jj

2Φ
(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj

−
Φ

(S,l)
ij φ̃

(S,l)
ii

2Φ
(S,l)
ii

√
Φ

(S,l)
ii Φ

(S,l)
jj

 ,

(B.43)
where φ̃(S,l)

ij := 1
nlp

∑nl
k=1

∑p
t=1 ε

(S,k,l)>
ti ε

(S,k,l)
tj − Φ

(S,l)
ij . We notice that ε(S,k,l)ti ε

(S,k,l)
tj are not

independent across t = 1, . . . , p due to the temporal association, while the state-of-the-art theory
of high-dimensional CLT elaborates only over independent random vectors yet. We use Eq. (B.2)
to convert φ(S,l) into a summation of independent random variables:

φ̃
(S,l)
ij =

1

nlp

nl∑
k=1

p∑
t=1

λ
(T ,l)
t ξ

(k,l)
ti ξ

(k,l)
tj −Φ

(S,l)
ij =

1

nlp

nl∑
k=1

p∑
t=1

λ
(T ,l)
t

(
ξ

(k,l)
ti ξ

(k,l)
tj − Φ

(S,l)
ij

)
, (B.44)

where ξ(k,l)
t

i.i.d.∼ N(0,Φ(S,l)), and the last equation holds based on tr(Σ(T ,l)) = 1. Then, we rewrite

Θij =
1√
Np

m∑
l=1

nl∑
k=1

p∑
t=1

θ
(k,l)
t,ij , (B.45)
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where N =
∑m

l=1 nl, and

θ
(k,l)
t,ij :=λ

(T ,l)
t

√
N

nlm

ξ(k,l)
t,i ξ

(k,l)
t,j − Φ

(S,l)
ij√

Φ
(S,l)
ii Φ

(S,l)
jj

−
Φ

(S,l)
ij (ξ

(k,l)2
t,j − Φ

(S,l)
jj )

2Φ
(S,l)
jj

√
Φ

(S,l)
ii Φ

(S,l)
jj

−
Φ

(S,l)
ij (ξ

(k,l)2
t,i − Φ

(S,l)
jj )

2Φ
(S,l)
ii

√
Φ

(S,l)
ii Φ

(S,l)
jj

 .

(B.46)
For fixed i and j, because ξ(k,l)

ti and ξ(k,l)
tj are Gaussian random variables independent across l,

k, and t, θ(k,l)
t,ij ’s are independent sub-exponential random variable across l, k, and t. It satisfies

Condition (E.1) of Corollary 2.1 in Chernozhukov et al. (2012). To obtain a non-asymptotic
bound for supx>0|P[‖TE‖∞ > x]− P[‖Z‖∞ > x]|, we apply Theorem 2.2 in Chernozhukov et al.
(2012) to obtain

KS∞(ΘE, Z) ≤ C(κ1) max

{
log7/8(qmn0p)

(mn0p)1/8
,
log2(qmn0p)

(mn0p)1/2

}
. (B.47)

Alongside the results in Proposition 2.3.2 and Eq. (B.42), it obtains the desired result.

B.2.5 Proof of Theorem 2.3.5
We denote the conditional Kolmogorov-Smirnov distance between ‖Ẑ‖∞ and ‖Z‖∞ given ob-
served data D by KS∞(Ẑ, Z|D).

KS∞(Ẑ, Z|D) := sup
x>0
|P[‖Ẑ‖∞ > x|D]− P[‖Z‖∞ > x]|. (B.48)

The error of the probability estimate is upperbounded by

sup
x>0
|P[‖T̂E‖∞ > x]− P[‖Ẑ‖∞ > x|D]|

≤ sup
x>0
|P[‖T̂E‖∞ > x]− P[‖Z‖∞ > x]|+KS∞(Ẑ, Z|D).

(B.49)

Proposition 2.3.4 provides an upperbound for the first term. Therefore, it suffices to derive an
upperbound for KS∞(Ẑ, Z|D). According to Lemma 3.1 in Chernozhukov et al. (2012),

KS∞(Ẑ, Z|D) ≤ C‖ŜEE − SEE‖1/3
∞ {1 ∨ log(|E|/‖ŜEE − SEE‖∞)}2/3. (B.50)

Therefore, it suffices to upperbound the size of ‖ŜEE − SEE‖∞. In Eq. (2.17), S(i1,j1),(i2,j2) is
given by

S(i1,j1),(i2,j2)

:=
1

m

m∑
l=1

‖Σ(T ,l)‖2
F

p

ρ(S,l)
i1i2

ρ
(S,l)
j1j2

+ ρ
(S,l)
i1j2

ρ
(S,l)
i2j1

+
1

2
ρ

(S,l)
i1j1

ρ
(S,l)
i2j2

(
ρ

(S,l)2
i1i2

+ ρ
(S,l)2
j1j2

+ ρ
(S,l)2
i1j2

+ ρ
(S,l)2
i2j1

)
− ρ(S,l)

i1i2
ρ

(S,l)
i2j2

ρ
(S,l)
i2j1
− ρ(S,l)

i1i2
ρ

(S,l)
i1j1

ρ
(S,l)
i1j2
− ρ(S,l)

j1j2
ρ

(S,l)
i2j2

ρ
(S,l)
i1j2
− ρ(S,l)

j1j2
ρ

(S,l)
i2j1

ρ
(S,l)
i1j1

 .
(B.51)
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Corollary 2 gives a bound on the error in ‖Σ̂(T ,l)‖2
F :

max
l=1,...,m

‖Σ̂(T ,l)‖2
F − ‖Σ(T ,l)‖2

F

p
≤ C(κ1, κ3)

log(qmn0p)

(qn0)
1− 1

2(α0+1)

(B.52)

with probability at least 1− (qmn0p)
−1/2. On the other hand, Proposition 2.3.2 implies that the

error in ρ̂(S,l)
ij is mainly driven by Θ

(S,l)
ij , where the size of Θ

(S,l)
ij is bounded by the Berry-Esseen

bound for sub-exponential random variables (for example, see Kuchibhotla and Chakrabortty,
2018):

max
i,j

m∑
l=1

|Θ(S,l)
ij | ≤ C(κ1, κ3)

√
m+ log(qmn0p)

mn0p
(B.53)

with probability at least 1 − (qmn0p)
−1/2. (Notice that, because of Assumption 4, the above

probabilistic bound is larger than dm+log2(qmn0p)
n0p

, which is given as a probabilistic bound for

maxi,j
∑m

l=1|O
(S,l)
ij | in Proposition 2.3.2.) Because Assumption 3 implies that both ‖Σ

(T ,l)‖2F
p

and

mini,j ρ
(S,l)
ij are bounded away from both 0 and∞ by some constants dependent to κ3,

‖ŜEE − SEE‖∞ ≤ C(κ1, κ3) max

{
max
l=1,...,m

‖Σ̂(T ,l)‖2
F − ‖Σ(T ,l)‖2

F

p
,max

i,j

m∑
l=1

|Θ(S,l)
ij |

}

≤ C(κ1, κ3, κ5) max

{
log(qmn0p)

(n0q)
1− 1

2(α0+1)

,

√
m+ log(qmn0p)

mn0p

} (B.54)

with probability at least 1 − C(qmn0p)
−1/2 for a sufficiently large n0. Plugging the result into

Eq. (B.50), we obtain the conclusion of the theorem.

B.2.6 Proof of Theorem 2.3.6
Based on the definition of CE(1− α) in Eq. (2.18),

0 ∈ CE(1− α) ⇐⇒ ‖T̂E‖∞ ≤ q̂‖Ẑ‖∞,1−α. (B.55)

Under the null hypothesis, TE = 0, and

P[0 ∈ CE(1− α)] = P[‖T̂E‖∞ ≤ q̂‖Ẑ‖∞,1−α]

≤ P[‖Ẑ‖∞ ≤ q̂‖Ẑ‖∞,1−α|D] + sup
x>0
|P[‖T̂E‖∞ ≤ x]− P[‖Ẑ‖∞ ≤ x|D]|

= 1− α + sup
x>0
|P[‖T̂E‖∞ ≤ x]− P[‖Ẑ‖∞ ≤ x|D]|

(B.56)
almost surely. Then, due to Theorem 2.3.5,

P[0 ∈ CE(1− α)] ≤ 1− α +M (B.57)
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with probability at least 1 − C(qmn0p)
−1/2, where M is the probabilistic upper bound for

supx>0|P[‖T̂E‖∞ ≤ x]− P[‖Ẑ‖∞ ≤ x|D]| in Theorem 2.3.5. Similarly,

P[0 ∈ CE(1− α)] ≥ 1− α−M (B.58)

with the same probability. Because the assumed sample complexity implies that M → 0,
P[0 /∈ CE(1− α)]

p→ α, which verifies the validity of the testing procedure.
For the second claim, we use existing results in the extreme value theory of Gaussian random

vectors (e.g., see Exercise 5.10, Wainwright, 2019) that

P
[
‖Ẑ‖∞ ≥ E[‖Ẑ‖∞|D] + ν

∣∣∣D] ≤ exp

(
− ν2

2 max(i,j)∈E Ŝ(i,j),(i,j)

)
. (B.59)

and
E[‖Ẑ‖∞|D] ≤ C

√
log q max

(i,j)∈E
Ŝ(i,j),(i,j), (B.60)

almost surely. With ν =
√
−2 logαmax(i,j)∈E Ŝ(i,j),(i,j),

q̂‖Ẑ‖∞,1−α ≤ (C
√

log q +
√
−2 logα) max

(i,j)∈E
Ŝ(i,j),(i,j), (B.61)

almost surely. As we saw in Appendix B.2.5,

‖ŜEE − SEE‖∞ ≤ C(κ1, κ3, κ5) max

{
log(qmn0p)

(n0q)
1− 1

2(α0+1)

,

√
m+ log(qmn0p)

mn0p

}
(B.62)

with probability at least 1 − C(qmn0p)
−1/2. Due to Assumptions 4 and 5, the right hand side

converges to 0 as n0 →∞, and therefore

q̂‖Ẑ‖∞,1−α ≤ C(κ1, κ3, κ5)(
√

log q +
√
−2 logα) max

(i,j)∈E
S(i,j),(i,j) (B.63)

with the same probability for sufficiently large n0. Suppose that the assumed alternative hypothesis
implies that

‖TE‖∞ ≥ C(κ1, κ3, κ5)
√

log q max
(i,j)∈E

S(i,j),(i,j) ≥ q̂‖Ẑ‖∞,1−α + q̂‖Ẑ‖∞,1/q. (B.64)

Then,

P[0 ∈ CE(1− α)] = P[‖T̂E‖∞ ≤ q̂‖Ẑ‖∞,1−α]

≤ P[‖TE‖∞ − ‖T̂E − TE‖∞ ≤ q̂‖Ẑ‖∞,1−α]

= P[‖T̂E − TE‖∞ ≥ q̂‖Ẑ‖∞,1/q]

≤ P[‖Ẑ‖∞ ≥ q̂‖Ẑ‖∞,1/q|D] + sup
x>0

∣∣∣P[‖T̂E‖∞ ≤ x]− P[‖Ẑ‖∞ ≤ x|D]
∣∣∣

= 1/q + sup
x>0

∣∣∣P[‖T̂E‖∞ ≤ x]− P[‖Ẑ‖∞ ≤ x|D]
∣∣∣,

(B.65)
which converges to 0 as n0 →∞, due to the assumed sample complexity. It verifies the second
conclusion about the power analysis.
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B.2.7 Proof of Proposition 2.3.7

Let β̃(T ,l) be the projected parameter of β(T ,l) onto the parameter space under the banded Cholesky
factor assumption. That is, for t = 1, . . . , p,

β̃
(T ,l)
·,t := argmin

b∈Rp
E
[
‖X(T ,l)

t,· −X(T ,l)>b‖2
2

]
w.r.t bs = 0 where s < t− hl or s ≥ t.

(B.66)

According to the regression theory, β̃(T ,l)
·,t can be rewritten in terms of Σ(T ,l) only:

β̃
(T ,l)
t−h:t−1,t = −Ω̃

(T ,l)
t,hl+1,1:hl

/Ω̃
(T ,l)
t,hl+1,hl+1, (B.67)

where Ω̃
(T ,l)
t =

(
Σ

(T ,l)
t−hl:t,t−hl:t

)−1

∈ Rhl+1×hl+1. We denote the regression error by

ε̃
(T ,l)
t,i := X

(T ,l)
t,i −X(T ,l)>

·,i β̃
(T ,l)
·,t , (B.68)

and Φ̃
(T ,l)
tt := 1

nlq
E[‖ε̃(T ,l)t,i ‖2

2]. Then,

Φ̃
(T ,l)
tt =

tr(Σ(S,l))

q

1

Ω̃
(T ,l)
t,hl+1,hl+1

. (B.69)

We notice that Ω̃
(T ,l)
t,hl+1,1:hl

/Ω̃
(T ,l)
t,hl+1,hl+1 and 1/Ω̃

(T ,l)
t,hl+1,hl+1 are the projected parameter and predic-

tion error of the AR(hl) regression on vector-variate observations, so the bias analyses in the
existing literature (e.g., Liu and Ren (2020)) is useful here. For example, Lemma B.3 in Liu and
Ren (2020) implies that under Assumption 5∥∥∥β̃(T ,l)

·,t − β(T ,l)
·,t

∥∥∥
2
≤ C(κ3, κ5)(hl − 1)−αl−1/2,∣∣∣∣Φ̃(T ,l)

tt − tr(Σ(S,l))

q
Φ

(T ,l)
tt

∣∣∣∣ ≤ C(κ3, κ5)(hl − 1)−αl−1/2.
(B.70)

Now, it suffices to establish the probabilistic error bound of β̂(T ,l) and Φ̂(T ,l) against β̃(T ,l) and
Φ̃(T ,l), respectively. We take a similar approach with the proof of Theorem 2.3.1. First, we notice
that

β̂
(T ,l)
t−hl:t−1,t =

(
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)−1 (
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t,·

)
. (B.71)

Then, (
1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)
(β̂

(T ,l)
·,t − β̃(T ,l)

·,t )

=
1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t,· −

(
1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)
β̃

(T ,l)
t−hl:t−1,t

=
1

nlq
X

(T ,l)
t−hl:t−1,·ε̃

(T ,l)>
t,· .

(B.72)
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By a similar argument with the proof of Lemma B.2.3,

P

[
max
l=1,...,m

max
t=1,...,p

∥∥∥∥( 1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)
∆̃

(T ,l)
·,t

∥∥∥∥
∞
≥ C(κ1, κ3)

√
log(qmn0p)

n0q

]

= P

[
max
l=1,...,m

max
t=1,...,p

∥∥∥∥ 1

nlq
X

(T ,l)
t−hl:t−1,·ε̃

(T ,l)>
t,·

∥∥∥∥
∞
≥ C(κ1, κ3)

√
log(qmn0p)

n0q

]
≤ C(qmn0p)

−1/2

(B.73)

for some positive constants C(κ3) and C, where ∆̃(T ,l) := β̂(T ,l) − β̃(T ,l). Under the event,∣∣∣∣∆̃(T ,l)>
·,t

(
1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)
∆̃

(T ,l)
·,t

∣∣∣∣ ≤ ∥∥∥∥( 1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)
∆̃

(T ,l)
·,t

∥∥∥∥
∞
‖∆̃(T ,l)
·,t ‖1

≤ C(κ1, κ3)

√
log(qmn0p)

n0q
‖∆̃(T ,l)
·,t ‖1

≤ C(κ1, κ3)

√
hl

log(qmn0p)

n0q
‖∆̃(T ,l)
·,t ‖2,

(B.74)
for any t = 1, . . . , T and l = 1, . . . ,m. On the other hand, by a similar argument with the proof
of Lemma B.2.1,

P

[
max
l=1,...,m

max
s,t

∣∣∣∣ 1

nlq
X(T ,l)
s,· X

(T ,l)>
t,· − tr(Σ(S,l))

q
Σ

(T ,l)
st

∣∣∣∣ ≥ C(κ1, κ3)

√
log(qmn0p)

n0q

]
≤ C(qmn0p)

−1/2

(B.75)

for some positive constants C(κ3) and C. Under the event,∣∣∣∣∆̃(T ,l)>
·,t

(
1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,· −

tr(Σ(S,l))

q
Σ

(T ,l)
t−hl:t−1,t−hl:t−1

)
∆̃

(T ,l)
·,t

∣∣∣∣
≤
∥∥∥∥ 1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,· −

tr(Σ(S,l))

q
Σ

(T ,l)
t−hl:t−1,t−hl:t−1

∥∥∥∥
∞
‖∆̃(T ,l)
·,t ‖2

1

≤ C(κ1, κ3)

√
log(qmn0p)

n0q
‖∆̃(T ,l)
·,t ‖2

1 ≤ C(κ1, κ3)hl

√
log(qmn0p)

n0q
‖∆̃(T ,l)
·,t ‖2

2

≤ 1

2κ3

‖∆̃(T ,l)
·,t ‖2

2,

(B.76)

for any t = 1, . . . , T , l = 1, . . . ,m, and a sufficiently large n0 due to Assumption 5. Moreover
with Assumption 3,∣∣∣∣∆̃(T ,l)>

·,t

(
1

nlq
X

(T ,l)
t−hl:t−1,·X

(T ,l)>
t−hl:t−1,·

)
∆̃

(T ,l)
·,t

∣∣∣∣ ≥ 1

2κ3

‖∆̃(T ,l)
·,t ‖2

2 (B.77)
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with probability at least 1− C(qmn0p)
−1/2. Eqs. (B.74) and (B.77) imply

1

2κ3

‖∆̃(T ,l)
·,t ‖2

2 ≤ C(κ1, κ3)

√
hl

log(qmn0p)

n0q
‖∆̃(T ,l)
·,t ‖2, (B.78)

and

‖∆̃(T ,l)
·,t ‖2 ≤ C(κ1, κ3)

√
hl

log(qmn0p)

n0q
and ‖∆̃(T ,l)

·,t ‖1 ≤ C(κ1, κ3)hl

√
log(qmn0p)

n0q
. (B.79)

for any t = 1, . . . , T , l = 1, . . . ,m and a sufficiently large n0, with probability at least 1 −
C(qmn0p)

−1/2 . Integrating Eqs. (B.70) and (B.79), we obtain the first result that, with the same
probability,

‖β̂(T ,l)
·,t − β(T ,l)

·,t ‖2 ≤ C(κ3, κ5)(hl − 1)−αl−1/2 + C(κ1, κ3)hl

√
log(qmn0p)

n0q

≤ C(κ1, κ3, κ5)

√
log(qmn0p)

(n0q)1−1/2(α0+1)
,

(B.80)

for any t = 1, . . . , T , l = 1, . . . ,m and a sufficiently large n0, given that hl = b(nlq)1/2(αl+1)c.
For the second result, we observe that∣∣∣Φ̂(T ,l)

tt − Φ̃
(T ,l)
tt

∣∣∣ ≤ 1

nlq

∣∣∣‖ε̂(T ,l)t,· ‖2
2 − ‖ε̃

(T ,l)
t,· ‖2

2

∣∣∣+

∣∣∣∣ 1

nlq
‖ε̃(T ,l)t,· ‖2

2 − Φ̃
(T ,l)
tt

∣∣∣∣. (B.81)

For the first term,

1

nlq

∣∣∣‖ε̂(T ,l)t,· ‖2
2 − ‖ε̃

(T ,l)
t,· ‖2

2

∣∣∣
=

2

nlq

∣∣∣∆̃(T ,l)>
·,t X

(T ,l)
t−h:t−1,·ε̃

(T ,l)>
t,·

∣∣∣+
1

nlq

∣∣∣∆̃(T ,l)>
·,t X

(T ,l)
t−h:t−1X

(T ,l)>
t−h:t−1∆̃

(T ,l)
·,t

∣∣∣
≤
∥∥∥∆̃

(T ,l)>
·,t

∥∥∥
1

∥∥∥∥ 2

nlq
X

(T ,l)
t−h:t−1,·ε̃

(T ,l)>
t,·

∥∥∥∥
∞

+
∥∥∥∆̃

(T ,l)>
·,t

∥∥∥2

2

∥∥∥∥ 1

nlq
X

(T ,l)
t−h:t−1X

(T ,l)>
t−h:t−1

∥∥∥∥
2

≤ C(κ1, κ3)h
log p

nlq

(B.82)

for any t = 1, . . . , T , l = 1, . . . ,m, and a sufficiently large n0, with probability at least 1 −
C(qmn0p)

−1/2, based on Eqs. (B.74) and (B.76) and Assumption 3. For the second term, a similar
argument with the proof of Lemma B.2.4 implies that

P

[
max
l=1,...,m

max
s,t

∣∣∣∣ 1

nlq
ε̃(T ,l)s,· ε̃

(T ,l)>
t,· − tr(Σ(S,l))

q
Φ̃

(T ,l)
st

∣∣∣∣ ≥ C(κ1, κ3)

√
log(qmn0p)

nlq

]
≤ C(qmn0p)

−1/2.

(B.83)

96



In sum,

∣∣∣Φ̂(T ,l)
tt − Φ̃

(T ,l)
tt

∣∣∣ ≤ C(κ1, κ3)h
log p

n0q
+ C(κ1, κ3)

√
log(qmn0p)

nlq
≤ C(κ1, κ3)

√
h

log p

n0q
(B.84)

for any t = 1, . . . , T , l = 1, . . . ,m and a sufficiently large n0, with probability at least 1 −
C(qmn0p)

−1/2, which implies the second conclusion where h = b(nlq)1/2(αl+1)c.

B.2.8 Proof of Theorem 2.3.8

We recall the Cholesky decomposition of the temporal precision matrix:

Ω(T ,l) =
tr(Σ(S,l))

q
(I − β(T ,l)>)Φ(T ,l)−1(I − β(T ,l))

Σ(T ,l) =
q

tr(Σ(S,l))
(I − β(T ,l)>)−1Φ(T ,l)(I − β(T ,l))−1

(B.85)

Our temporal covariance matrix estimate is based on the estimated Cholesky factor, β̂(T ,l), and
noise variance, Φ̂(T ,l), in Eqs. (2.23) and (2.24). In regard to their estimate errors, we use the
following lemma as a corollary of Proposition 2.3.7. See Appendix B.3.7 for the proof.
Lemma B.2.7. Suppose that hl = b(nlq)1/(1+α)c and η = C(κ3) satisfies η ≤ λ1(I − β(T ,l)) for
l = 1, . . . ,m. Then, following the procedure defined in Section 2.2.3,

P


max
l

1

p

∥∥∥∥Φ̂(T ,l) − tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥2

F

≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)
,

max
l

1

p

∥∥∥∥Φ̂(T ,l)−1 − q

tr(Σ(S,l))
Φ(T ,l)−1

∥∥∥∥2

F

≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)


≤ C(qmn0p)

−1/2,

(B.86)

P

 max
l

1

p
‖Pη(I − β̂(T ,l))− (I − β(T ,l))‖2

F ≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)
,

max
l

1

p
‖Pη(I − β̂(T ,l))−1 − (I − β(T ,l))−1‖2

F ≥ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)


≤ C(qmn0p)

−1/2,

(B.87)

for sufficiently large n0.
We note that Assumption 3 implies that the operator norms I − β(T ,l), (I − β(T ,l))−1, Φ(T ,l),

and Φ(T ,l)−1 are bounded; see Lemma B.2 in Liu and Ren (2020). The eigenvalue truncation in
Eq. (2.25) implies the bounded operator norm for Pη(I − β̂(T ,l)) and Pη(I − β̂(T ,l))−1. Finally,
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Theorem 2.3.8 implies the bounded operator norm for Φ̂(T ,l) and Φ̂(T ,l)−1. Namely,

‖I − β(T ,l)‖op, ‖Pη(I − β̂(T ,l))‖op ≤ C(κ3)

‖(I − β(T ,l))−1‖op, ‖Pη(I − β̂(T ,l))−1‖op ≤ C(κ3)

‖Φ(T ,l)‖op,

∥∥∥∥tr(Σ(S,l))

q
Φ̂(T ,l)

∥∥∥∥
op

≤ C(κ3)

‖Φ(T ,l)−1‖op,

∥∥∥∥ q

tr(Σ(S,l))
Φ̂(T ,l)−1

∥∥∥∥
op

≤ C(κ3)

(B.88)

for any l = 1, . . . ,m and a sufficiently large n0, with probability at least 1− C(qmn0p)
−1/2.

Now, we move on to connect the error in the temporal covariance matrix estimate with the
Frobenius norm bounds in Lemma B.2.7. We use a well known inequality about the Frobenius
and operator norms:

‖AB‖F ≤ ‖A‖op‖B‖F (B.89)

for any compatible matrices A and B. For the temporal covariance matrix,∥∥∥∥Σ
(T ,l) − tr(Σ(S,l))

q
Σ(T ,l)

∥∥∥∥
F

≤ ‖(I − β(T ,l))−1‖op

∥∥∥∥tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥
op

‖Pη(I − β̂(T ,l))−1 − (I − β(T ,l))−1‖F

+ ‖(I − β(T ,l))−1‖op

∥∥∥∥Φ̂(T ,l) − tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥
F

‖Pη(I − β̂(T ,l))−1‖op

+ ‖Pη(I − β̂(T ,l))−1 − (I − β(T ,l))−1‖F
∥∥∥∥tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥
op

‖Pη(I − β̂(T ,l))−1‖op

(B.90)

and hence, plugging in the previously obtained bounds,∥∥∥∥Σ
(T ,l) − tr(Σ(S,l))

q
Σ(T ,l)

∥∥∥∥
F

≤ C(κ1, κ3, κ5)
√
p

√
log(qmn0p)

(n0q)1−1/(2α0+2)
(B.91)

for any l = 1, . . . ,m with probability at least 1− C(qmn0p)
−1/2. The second conclusion about

Ω
(T ,l)

is similarly obtained.

B.2.9 Proof of Corollary 2.3.9
The error in the Frobenius norm estimate can be upperbounded by a function of the error in the
covariance matrix estimate:

1

p

∣∣∣‖Σ̂(T ,l)‖2
F − ‖Σ(T ,l)‖2

F

∣∣∣
=

1

p

(
‖Σ̂(T ,l)‖F + ‖Σ(T ,l)‖F

) ∣∣∣‖Σ̂(T ,l)‖F − ‖Σ(T ,l)‖F
∣∣∣

≤
(

2
√
p
‖Σ(T ,l)‖F +

1
√
p
‖Σ̂(T ,l) − Σ(T ,l)‖F

)
1
√
p
‖Σ̂(T ,l) − Σ(T ,l)‖F .

(B.92)
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Because 1√
p
‖Σ(T ,l)‖F is bounded away from both 0 and∞, and Theorem 2.3.8 implies that

1
√
p
‖Σ̂(T ,l) − Σ(T ,l)‖F ≤ C(κ1, κ3, κ5)

√
log(qmn0p)

p(n0q)1−1/(2α0+2)
(B.93)

with probability at least 1− C(qmn0p)
−1/2,

1

p

∣∣∣‖Σ̂(T ,l)‖2
F − ‖Σ(T ,l)‖2

F

∣∣∣ ≤ C(κ1, κ3, κ5)
1
√
p
‖Σ̂(T ,l) − Σ(T ,l)‖F

≤ C(κ1, κ3, κ5)

√
log(qmn0p)

p(n0q)1−1/(2α0+2)

(B.94)

with probability at least 1− C(qmn0p)
−1/2 for sufficiently large n0.

B.3 Proof of the Lemmas

B.3.1 Proof of Lemma B.2.1
In Eq. (B.1), W (S,l)

ti W
(S,l)
tj is a sub-exponential variable with

E
[
exp

(
ν(W

(S,l)
ti W

(S,l)
tj − Σ

(T ,l)
tt Σ

(S,l)
ij )

)]
≤ eC(κ3)ν2 , (B.95)

for all ν : |ν| < C(κ3) due to Assumption 3, and independent across t = 1, . . . , nlp. According
to Theorem 2.8.2 in Vershynin (2018) and Assumptions 1 and 2, our main claim is a result of
maximal ineqauality on sub-exponential random variables.

B.3.2 Proof of Lemma B.2.2
In Eq. (B.2),

(ξ
(S,l)
·,i ,W

(S,l)
·,j )

i.i.d.∼ N

(
0, I ⊗ diag

(
1

Ω
(S,l)
ii

,Σ
(S,l)
jj

))
. (B.96)

Because W (S,l)
·,i is independent to ξ(S,l)

·,j ,

{
ξ

(S,l)
·,i W
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·,j |W (S,l)

·,j

}
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(
0,
‖W (S,l)
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2

Ω
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)
a.s., (B.97)

and therefore
( √

nlp
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(B.98)
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Due to Assumption 3,
‖W (S,l)
·,j ‖22

‖X(S,l)
·,j ‖22

≤ C(κ3). Hence, the sub-exponential inequality in Theorem 2.8.2,

Vershynin (2018) implies that, for any ν > 0,
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( √
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( √
nlp

‖X(S,l)
·,j ‖2

ε
(S,l)>
·,i X

(S,l)
·,j

)2

≥ ν


≤ exp

[
−C(κ3) min

{(
ν

nlp

)2
1

m
,
ν

nlp

}]
.

(B.99)

Assumption 3 implies that
∑m

l=1 E
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(B.100)

The first conclusion follows the maximal inequality applied to the above probability bound. The
second conclusion follws a similar argument with

(ξ
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·,i ,W (S,l)β
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. (B.101)

B.3.3 Proof of Lemma B.2.3
In Eq. (B.2),

(ξ
(S,l)
·,i ,W
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(
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, (B.102)

(ξ
(S,l)
·,i ,W (S,l)β

(S,l)
·,j )

i.i.d.∼ N

(
0, I ⊗ diag

(
1

Ω
(S,l)
ii

,
Ω

(S,l)
ii Σ

(S,l)
ii − 1

Ω
(S,l)
ii

))
. (B.103)

In other words, ξ(S,l)
ti W

(S,l)
tj and ξ(S,l)

ti W
(S,l)
t,· β

(S,l)
·,i are sub-exponential random variables with mean

zero and constant bounded by C(κ3):

E
[
exp

(
νξ

(S,l)
ti W

(S,l)
tj

)]
≤ eC(κ3)h2 , (B.104)

E
[
exp

(
νξ

(S,l)
ti W

(S,l)
t,· β

(S,l)
·,i

)]
≤ eC(κ3)h2 , (B.105)

for all ν : |ν| < C(κ3) due to Assumption 3, and independent across t = 1, . . . , nlp. Then, similar
arguments as in Lemma B.2.1 induce the desired conclusions.
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B.3.4 Proof of Lemma B.2.4
In Eq. (B.2), ξ(S,l)

ti ξ
(S,l)
tj is a sub-exponential variable with

E
[
exp

(
ν(ξ

(S,l)
ti ξ

(S,l)
tj − Σ

(T ,l)
tt Φ

(S,l)
ij )

)]
≤ eC(κ3)ν2 , (B.106)

for all ν : |ν| < C(κ3) due to Assumption 3, and independent across t = 1, . . . , nlp. Following
the same proof as in Lemma B.2.1, we prove the claim.

B.3.5 Proof of Lemma B.2.5
We first refer to the definitions of Orlicz norms and sub-Weibull random variables in Kuchibhotla
and Chakrabortty (2018).
Definition B.3.1. Let g be a non-decreasing non-negative function on [0,∞) with g(0) = 0. For a
random variable X , the g-Orlicz norm is defined as

‖X‖g := inf{ν > 0 : E[g(|X|/ν)] ≤ 1}. (B.107)

Definition B.3.2. A random variable X is sub-Weibull of order α > 0, denoted by X ∼
sub-Weibull(α), if

‖X‖ψα <∞, where ψα(x) := exp(xα)− 1 for x ≥ 0. (B.108)

Two important examples of sub-Weibull random variables are sub-Gaussian and sub-exponential
random variables, which are sub-Weibull(2) and sub-Weibull(1), respectively. Based on the prop-
erties of ‖·‖ψ1 (See Section 2.7 in Vershynin, 2018), it is easy to show that maxi,j‖φ̃(S,l)

ij ‖ψ1 ≤
C(κ1, κ3) 1√

n0p
. Following Proposition D.2 in Kuchibhotla and Chakrabortty (2018),

max
i,j

max

{∥∥∥|φ̃(S,l)
ii φ̃

(S,l)
jj |

∥∥∥
ψ1/2

,
∥∥∥|φ̃(S,l)

ii φ̃
(S,l)
ij |

∥∥∥
ψ1/2

}
≤ C(κ1, κ3)

1

n0p
. (B.109)

Hence, Theorem 3.1 in Kuchibhotla and Chakrabortty (2018) induces, for any given i, j ∈ [q],
and ν > 0,

P

[
m∑
l=1

(
|φ̃(S,l)
ii φ̃

(S,l)
jj | − E|φ̃(S,l)

ii φ̃
(S,l)
jj |

)
≥ C(κ1, κ3)

√
mν + ν2

n0p

]
≤ e−ν , (B.110)

and by setting ν = C log(qmn0p)

P

[
m∑
l=1

|φ̃(S,l)
ii φ̃

(S,l)
jj | ≥

m∑
l=1

E|φ̃(S,l)
ii φ̃

(S,l)
jj |+ C(κ1, κ3)

√
m log(qmn0p) + log2(qmn0p)

n0p

]
≤ 2

q2
(qmn0p)

−1/2,

(B.111)
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which similarly applies to φ̃(S,l)
ii φ̃

(S,l)
ij . Thus, by the maximal inequaity,

P

[
max
i,j

max

{
m∑
l=1

|φ̃(S,l)
ii φ̃

(S,l)
jj |,

m∑
l=1

|φ̃(S,l)
ii φ̃

(S,l)
ij |

}
≥ C(κ1, κ3)

(
m+ log2(qmn0p)

n0p

)]
≤ (qmn0p)

−1/2.
(B.112)

B.3.6 Proof of Lemma B.2.6

Because ε̂(S,l)·,i = X
(S,l)
·,i −X(S,l)β̂

(S,l)
·,i and ε(S,l)·,i = X

(S,l)
·,i −X(S,l)β

(S,l)
·,i ,

m∑
l=1

|φ̂(S,l)
ij |

=
m∑
l=1

1

nlp

∣∣∣ε̂(S,l)>·,i ε̂
(S,l)
·,j − ε

(S,l)>
·,i ε

(S,l)
·,j +

(
‖ε(S,l)·,i ‖2

2∆
(S,l)
ij + ‖ε(S,l)·,j ‖2

2∆
(S,l)
ji

)
I(i 6= j)

∣∣∣
=

m∑
l=1

1

nlp

∣∣∣∣∣∣
∆

(S,l)>
·,i X(S,l)>X(S,l)∆

(S,l)
·,j − ε

(S,l)>
·,j X(S,l)∆

(S,l)
·,i − ε

(S,l)>
·,i X(S,l)∆

(S,l)
·,j

+
(
‖ε(S,l)·,i ‖2

2∆
(S,l)
ij + ‖ε(S,l)·,j ‖2

2∆
(S,l)
ji

)
I(i 6= j)

∣∣∣∣∣∣
(B.113)

For the first term, it follows Theorem 2.3.1 that

m∑
l=1

1

nlp

∣∣∣∆(S,l)>
·,i X(S,l)>X(S,l)∆

(S,l)
·,j

∣∣∣ ≤ C(κ1, κ3) d
m+ log(qmn0p)

n0p
(B.114)

uniformly over i and j, with probability at least 1− 2(qmn0p)
−1/2. For the rest terms,

m∑
l=1

1

nlp

∣∣∣ε(S,l)>·,j X(S,l)∆
(S,l)
·,i − ‖ε

(S,l)
·,j ‖2

2∆
(S,l)
ij I(i 6= j)

∣∣∣
=

m∑
l=1

1

nlp

∣∣∣∣∣ε(S,l)>·,j X
(S,l)
·,j ∆

(S,l)
ji I(i 6= j)− ‖ε(S,l)·,j ‖2

2∆
(S,l)
ij I(i 6= j) +

∑
k:k 6=i,j

ε
(S,l)>
·,j X

(S,l)
·,k ∆

(S,l)
ki

∣∣∣∣∣
≤

m∑
l=1

1

nlp

(∣∣∣ε(S,l)>·,j X(S,l)β
(S,l)
·,j ∆

(S,l)
ji I(i 6= j)

∣∣∣+
∑
k:k 6=i,j

∣∣∣ε(S,l)>·,j X
(S,l)
·,k ∆

(S,l)
ki

∣∣∣) .
(B.115)
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We notice that Theorem 2.3.1 and Lemma B.2.2 implies that
m∑
l=1

1

nlp

∑
k:k 6=i,j

∣∣∣ε(S,l)>·,j X
(S,l)
·,k ∆

(S,l)
ki

∣∣∣
≤
∑
k:k 6=i,j

1

n0p

 m∑
l=1

( √
nlp

‖X(S,l)
·,k ‖2

ε
(S,l)>
·,i X

(S,l)
·,k

)2
1/2

‖∆(S,·)
ki ‖2

≤

max
k:k 6=i,j

1

n0p

 m∑
l=1

( √
nlp

‖X(S,l)
·,k ‖2

ε
(S,l)>
·,i X

(S,l)
·,k

)2
1/2

( ∑
k:k 6=i,j

‖∆(S,·)
ki ‖2

)

≤ C(κ1, κ3) d
m+ log(qmn0p)

n0p

(B.116)

and
m∑
l=1

1

nlp
ε

(S,l)>
·,j X(S,l)β

(S,l)
·,j ∆

(S,l)
ji

≤ 1

n0p

 m∑
l=1

( √
nlp

‖X(S,l)
·,j ‖2

ε
(S,l)>
·,i X(S,l)β

(S,l)
·,j

)2
1/2

‖∆(S,·)
ji ‖2

≤ C(κ1, κ3) d
m+ log(qmn0p)

n0p

(B.117)

satisfy simultaneously uniformly over i and j with probability at least 1− C(qmn0p)
−1/2. We

obtain the desired result by plugging the above probability bounds into Eq. (B.113).

B.3.7 Proof of Lemma B.2.7
Because

1

p

∥∥∥∥Φ̂(T ,l) − tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥2

F

=
1

p

p∑
t=1

∣∣∣∣Φ(T ,l)
tt − tr(Σ(T ,l))

q
Φ

(T ,l)
tt

∣∣∣∣2, (B.118)

Proposition 2.3.7 implies that

max
l

1

p

∥∥∥∥Φ̂(T ,l) − tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥2

F

≤ C(κ1, κ3)
log(qmn0p)

(n0q)1−1/(2α0+2)
(B.119)

with probability at least 1− C(qmn0p)
−1/2. For Φ̂(T ,l)−1,

1

p

∥∥∥∥Φ̂(T ,l)−1 − q

tr(Σ(S,l))
Φ(T ,l)−1

∥∥∥∥2

F

≤ 1

p

∥∥∥∥Φ̂(T ,l) − tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥2

F

∥∥∥∥ q

tr(Σ(S,l))
Φ(T ,l)−1

∥∥∥∥2

op

∥∥∥Φ̂(T ,l)−1
∥∥∥2

op

≤ C(κ3)
1

p

∥∥∥∥Φ̂(T ,l) − tr(Σ(S,l))

q
Φ(T ,l)

∥∥∥∥2

F

(B.120)
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with probability at least 1−C(qmn0p)
−1/2 due to Assumption 3 and the bounded operator norm of

Φ̂(T ,l)−1 for sufficiently large n0 (guaranteed by Proposition 2.3.7). It verifies the first conclusion.
For β̂, Proposition 2.3.7 implies that

1

p

∥∥∥(I − β̂(T ,l))− (I − β(T ,l))
∥∥∥2

F
=

1

p

p∑
t=1

∥∥∥β̂(T ,l)
·,t − β(T ,l)

·,t

∥∥∥2

2

≤ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)

(B.121)

with probability at least 1− C(qmn0p)
−1/2. Because our estimator uses eigenvalue truncation,

we use Lemma B.1 in Liu and Ren (2020) to guarantee the error bound for Pη(I − β̂(T ,l)): given
that η ≤ λ1(I − β),

1

p

∥∥∥Pη(I − β̂(T ,l))− (I − β(T ,l))
∥∥∥2

F
≤ C

p

∥∥∥(I − β̂(T ,l))− (I − β(T ,l))
∥∥∥2

F

≤ C(κ1, κ3, κ5)
log(qmn0p)

(n0q)1−1/(2α0+2)

(B.122)

with probability at least 1− C(qmn0p)
−1/2. Then,

1

p

∥∥∥Pη(I − β̂(T ,l))−1 − (I − β(T ,l))−1
∥∥∥2

F

≤ 1

p

∥∥∥Pη(I − β̂(T ,l))− (I − β(T ,l))
∥∥∥2

F

∥∥∥Pη(I − β̂(T ,l))
∥∥∥2

op

∥∥(I − β(T ,l))−1
∥∥2

op

≤ C(κ3)
1

p

∥∥∥Pη(I − β̂(T ,l))− (I − β(T ,l))
∥∥∥2

F

(B.123)

due to Lemma B.2 in Liu and Ren (2020) and the bounded operator norm of Pη(I − β̂(T ,l)). It
verifies the second conclusion.

B.4 Derivation of the asymptotic covariance between the edge-
wise test statistics

In this section, we derive the asymptotic covariance of T̂i1j1 and T̂i2j2 in Eq. (2.17):

S(i1,j1),(i2,j2)

:=
1

m

m∑
l=1

‖Σ(T ,l)‖2
F

p

ρ(S,l)
i1i2

ρ
(S,l)
j1j2

+ ρ
(S,l)
i1j2

ρ
(S,l)
i2j1

+
1

2
ρ

(S,l)
i1j1

ρ
(S,l)
i2j2

(
ρ

(S,l)2
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+ ρ
(S,l)2
j1j2

+ ρ
(S,l)2
i1j2

+ ρ
(S,l)2
i2j1

)
− ρ(S,l)

i1i2
ρ

(S,l)
i2j2

ρ
(S,l)
i2j1
− ρ(S,l)

i1i2
ρ

(S,l)
i1j1

ρ
(S,l)
i1j2
− ρ(S,l)

j1j2
ρ

(S,l)
i2j2

ρ
(S,l)
i1j2
− ρ(S,l)

j1j2
ρ

(S,l)
i2j1

ρ
(S,l)
i1j1

 .
(B.124)
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By Proposition 2.3.2, ρ̂(S,l)
ij − ρ

(S,l)
ij has the leading term Θ

(S,l)
ij . Hence, T̂i1j1 and T̂i2j2 have

asymptotic covariance,

S(i1,j1),(i2,j2) = E

[(
1√
m

m∑
l=1

√
nlpΘ

(S,l)
i1j1

)(
1√
m

m∑
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√
nlpΘ

(S,l)
i2j2

)]

=
1

m

m∑
l=1

nlpE
[
Θ

(S,l)
i1j1

Θ
(S,l)
i2j2

]
.

(B.125)

Based on Eq. (2.37), for each l = 1, . . . ,m,

E
[
Θ

(S,l)
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Θ
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]
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(B.126)

which is a summation of the second moments of δ̃(S,l). For each second moment,

E[δ̃
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δ̃
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]
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(B.127)
where
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Plugging it into Eq. (B.126),
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(B.129)

Plugging it into Eq. (B.125) retrieves the desired result.
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Appendix C

Appendix for Chapter 3

C.1 Proof of Theorem 3.2.3

Let u(t)
k = S

(t,t)− 1
2

kk β
(t)
k and Ψ

(t)
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(t,t)− 1
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kk Φ
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is each sub-matrix of the marginal covariance matrix S of (X
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1 ;X
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1 ; . . . ;X

(T )
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kl ={
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for t, s ∈ [T ] and k, l = 1, 2. Then the minimal conditional entropy

condition can be rewritten into u(t)>
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for t ∈ [T ] and k = 1, 2. That is, u(t)
k is orthogonal to Ψ
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Denoting the block diagonal matrix of {S(t,t)
kk : t ∈ [T ], k = 1, 2} by V , R = V −

1
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(t,t)− 1
2

kk S
(t,s)
kl S

(s,s)− 1
2

ll = u
(t)
k Σ

(t,s)
kl u

(s)>
l + Ψ

(t)
k δ

(t,s)
kl .

Due to the orthogonality between u(t)
k and Ψ

(t)
k , the calculation of det(R) and R−1 is straightfor-

ward: det(R) = det(Ω)/
∏

k,t pdet(Ψ
(t)
k ) and Q = R−1 consists of sub-matrices

Q
(t,s)
kl = u

(t)
k Ω

(t,s)
kl u

(s)>
l + Ψ

(t)+
k δ

(t,s)
kl

where Ω = Σ−1 is the precision matrix and pdet(A) and A+ are the pseudo-determinant and
Moore-Penrose pseudo-inverse of a positive semi-definite matrix A. Notice that Ψ

(t)
k = I −

u
(t)
k u

(t)>
k = Ψ

(t)+
k and hence pdet(Ψ

(t)
k ) = 1. In turn, the negative log-likelihood under the model

(Eqs. (3.7) and (3.8)) of a parameter set θ = {Σ} ∪ {µ(t)
k , β

(t)
k ,Φ

(t)
k : t ∈ [T ] and k = 1, 2} wrt.
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observed time-series {X1,[n], X2,[n]}n=1,...,N is

nll(θ; {X1,[n], X2,[n]}n=1,...,N) =− log det(Ω) +
∑
k,t

log pdet(Ψ
(t)
k ) +

∑
k,t

log det(S
(t,t)
kk )

+ tr(ΩΣ) +
∑
k,t

tr(Ψ
(t)+
k S

(t,t)− 1
2

kk S
(t,t)

kk S
(t,t)− 1

2
kk )

=− log det(Ω) + tr(ΩΣ)

+
∑
k,t

{
log det(S

(t,t)
kk ) + tr(Ψ

(t)+
k S

(t,t)− 1
2

kk S
(t,t)

kk S
(t,t)− 1

2
kk )

}
(C.1)

where
Σ = Var

[
(u

(t)
1 S

(t,t)− 1
2

11 X
(t)
1 : t ∈ [T ]), (u

(t)
2 S

(t,t)− 1
2

22 X
(t)
2 : t ∈ [T ])

]
S

(t,s)

kl = Cov[X
(t)
k , X

(s)
l ]

for t, s ∈ [T ] and k, l = 1, 2. The maximum likelihood estimator satisfies the first optimality of

minimizing nll(θ; {X1,[n], X2,[n]}n=1,...,N) wrt. parameters u(t)
k and S

(t,t)− 1
2

kk

∇
u
(t)
k

nll =
∑
l,s

S
(t,t)− 1

2
kk S

(t,s)

kl S
(s,s)− 1

2
ll u

(s)
l Ω

(s,t)
lk − S(t,t)− 1

2
kk S

(t,t)

kk S
(t,t)− 1

2
kk u

(t)
k Σ

(t,t)
kk

= λ
(t)
k u

(t)
k , ∃λ

(t)
k ∈ R,

∇
S
(t,t)− 1

2
kk

nll =
∑
l,s

u
(t)
k Ω

(t,s)
kl u

(s)>
l S

(s,s)− 1
2

ll S
(s,t)

lk − u(t)
k Σ

(t,t)
kk u

(t)>
k S

(t,t)− 1
2

kk S
(t,t)

kk

−S(t,t) 1
2

kk + S
(t,t)− 1

2
kk S

(t,t)

kk

= 0

for all t ∈ [T ] and k = 1, 2. In this case,(
∇
S
(t,t)− 1

2
kk

nll

)
S

(t,t)− 1
2

kk =
(
∇
u
(t)
k

nll
)
u

(t)>
k − I + S

(t,t)− 1
2

kk S
(t,t)

kk S
(t,t)− 1

2
kk

= λ
(t)
k u

(t)
k u

(t)>
k − I + S

(t,t)− 1
2

kk S
(t,t)

kk S
(t,t)− 1

2
kk = 0,

so S(t,t)
kk = S

(t,t)

kk + λ
(t)
k β

(t)
k β

(t)>
k . Plugging it into Eq. (C.1), the maximum likelihood estimation

reduces to minimizing

nll(θ; {X1,[n], X2,[n]}n=1,...,N) = − log det(Ω) + tr(ΩΣ)−
∑
k,t

log(1− λ(t)
k )

wrt. Σ
(t,t)

kk = 1− λ(t)
k . It is equivalent to

argmin
Ω′,w

(t)
k

− log det(Ω′) + tr(Ω′Σ
′
)

where Σ
′(t,s)
kl = w

(t)>
k S

(t,s)

kl w
(s)
l , diag(Σ

′
) = 1, and Ω′ = DΩD for a diagonal matrix D with

D
(t,t)
kk =

√
1− λ(t)

k = Ω
(t,t)
kk . It is the same with finding w(t)

k to minimize log det(Σ
′
) under the

same constraints, which is the GENVAR procedure of Kettenring (1971).
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C.2 Fitting LaDynS
To update Ω, the P-gLASSO algorithm of Mazumder and Hastie (2012) is more efficient than

the original gLASSO algorithm of Friedman et al. (2008), which is attributed to P-gLASSO’s
flexibility with initial values: gLASSO operates with a strict choice of initial Ω̂ (Σ

−1
in case of

Eq. (3.14)), whereas P-gLASSO allows a warm start: in Algorithm 2, the estimate Ω̂ from the
past iteration serves as a warm start for the next iteration, so that we do not have to redo the entire
paths from Σ

−1
to Ω̂. The sparse structure of Ω in Fig. 3.3 allows additional efficiency since the

number of parameters reduces from 2T 2 to (2Tdcross − d2
cross) + (2Tdauto − d2

auto). Algorithm 3
is a modification of P-gLASSO that reduces the size of the LASSO sub-problem from 2T to
2dcross + 2dauto and the computational cost of one P-gLASSO iteration from O(T 4 + T 3N) to
O(T ((dcross + dauto)

3 + (dcross + dauto)
2N), when LASSO is solved by the LARS algorithm of

Efron et al. (2004).

C.3 Inference on the change of the factor loadings
The left column of Fig. C.1 shows the estimated change (the difference) in the factor loadings for
the two brain regions from the first bump (150 ms) and the second bump (400 ms) in Fig. 3.9a. To
check the significance of the distinction, we obtained 95% confidence intervals based on 200 boot-
strap estimates. In the bootstrap, N = 3000 trials was sampled from {X1,[n], X2,[n]}n=1,...,N with
replacement. Unlike the permutation bootstrap in Section 3.2.4, the resulting dataset maintains
not only the autocorrelation within each of X1 and X2 but also the correlated activity between
them. The 97.5 and 2.5 percentiles of the bootstrap estimated differences are shown at the middle
and right column of Fig. C.1, respectively. In PFC, at 400 ms compared with 150 ms, several
electrodes in the upper left corner have substantially larger weights, while the electrodes in the
lower middle of the array have substantially smaller weights, and the CIs are clearly separated
from 0. There appear to be differences in V4, but they are smaller.
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(a)

(b)

Figure C.1: Inference on the the factor loading change from 150ms to 400ms. The estimated
difference in the factor loadings for (a) V4 and (b) PFC from 150ms to 400ms alongside the 97.5
and 2.5 percentiles of the bootstrap distribution. The .05 and -.05 contours have been added to the
plots to show regions, blue above .05, red below -.05, where the differences may be distinguishable
from zero. The differences are more dramatic in PFC: there is a region in the upper left corner
of the array where the 2.5 percentile is well above .05, and thus separated from zero, while the
differences in the patch of (1000, 1500)× (500, 1500) have 97.5 percentile well below -.05.
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Algorithm 2 Coordinate descent algorithm to fit LaDynS
Input:
{Xk : k = 1, . . . , K}: input data
Λ ∈ [0,∞]KT×KT : sparsity penalty matrix
itermax ∈ N+: maximum iteration
ths ∈ R+: threshold for convergence

Output: Ω and w(t)
k ’s which solve (Eq. (3.13)) w.r.t. (Fig. 3.3)

Initialization:
1: Initialize w(t)

k so that w(t)>
k Var[X

(t)
k ]w

(t)
k = 1 for all t ∈ [T ] and k = 1, 2. e.g.,

w
(t)
k ← 1/

√
1>Var[X

(t)
k ]1. (C.2)

and let
Σ← Var[w

(1)>
1 X

(1)
1 , . . . , w

(T )>
2 X

(T )
2 ]. (C.3)

2: Initialize Σ and Ω by
Σ← Σ + λdiagI2T and Ω← Σ−1. (C.4)

Iteration:
3: for iter in 1:itermax do
4: Σlast ← Σ, Ωlast ← Ω
5: Σ,Ω← P-gLASSO(Ωinit,Σinit,Σ,Λ, itermax, ths).

6: for k in 1:2 and t in 1:T do
7: A← Cov[X

(t)
k , (Y

(s)
l : (l, s) 6= (k, t))].

8: b← (Ω
(t,s)
kl : (l, s) 6= (k, t))

9: if Ab 6= 0 then
10: w

(t)
k ← Var(X

(t)
k )−1Ab

11: w
(t)
k ← w

(t)
k /

√
w

(t)>
k Var[X

(t)
k ]w

(t)
k

12: end if
13: end for

14: Σ← Var
[
w

(1)>
1 X

(1)
1 , . . . , w

(T )>
2 X

(T )
2

]
.

15: if max(|Σ− Σlast|) < ths then
16: break
17: end if
18: end for
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Algorithm 3 Modified P-gLASSO (Mazumder and Hastie, 2012) algorithm
Input:

Ωinit,Σinit ∈ RP×P : initial values, Σinit = (Ωinit)
−1

Σ ∈ RP×P : sample covariance matrix of a P -variate random variable
Λ ∈ [0,∞]P×P : sparsity penalty matrix
itermax ∈ N+: maximum iteration
ths ∈ R+: threshold for convergence

Output: Ω and Σ = Ω−1 which solves (Eq. (3.14))
Initialization:

1: Σ← Σinit,Ω← Ωinit

Iteration:
2: for iter in 1:maxiter do
3: Σlast ← Σ, Ωlast ← Ω

4: for p in 1:P do
5: Dk : the collection of q’s in [P ] s.t. q 6= p and Λp,q <∞
6: Ip : the collection of q’s in 1:P s.t. q 6= p and Λp,q =∞
7: (We notate the submatrix of a matrix A ∈ RP×P of rows in I ⊂ [d] and columns in

J ⊂ [P ] by AIJ . We moreover use −p as a notation for [d]\{p} when it is used as a
subscript of A.)

8: W = (Ω−p,−p)
−1 can be easily calculated by Σ−p,−p − Σ−p,pΣ−p,p/Σp,p

9: Σp,p ← Σp,p + Λp,p

10: Ωp,Dp ,ΩDp,p ← LASSO(Σp,p ·WDp,Dp ,−Σp,Dp ,Λp,Dp) with an initial value Ωp,Dp .
11: Ωp,Ip ,ΩIp,p ← 0
12: Σp,−p,Σ−p,p ← −W:,DpΩDp,pΣp,p

13: Ωp,p ← (1− Ωp,DpΣDp,p)/Σp,p

14: Σ−p,−p = W + Σ−p,pΣ−p,p/Σp,p

15: end for

16: if max(|Σ− Σlast|) < ths then
17: break
18: end if
19: end for
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Appendix D

Appendix for Chapter 4

D.1 EM-algorithm to fit LDFA-H (Section 2)

Initialization Let θ̂(0) = {Σ̂(0)
1 , . . . , Σ̂

(0)
q , Φ̂

1,(0)
S , Φ̂

2,(0)
S , Φ̂

1,(0)
T , Φ̂

2,(0)
T , β̂1,(0), β̂2,(0), µ̂1,(0), µ̂2,(0)}

be the initial parameter value. Since the MPLE objective function for LDFA-H given in Eq. (4.9)
is not guaranteed convex, an EM-algorithm may find a local minimum according to a choice of
the initial value. Hence a good initialization is crucial to a successful estimation. Here we suggest
an initialization by a canonical correlation analysis (CCA).

Let {X1[n], X2[n]}n=1,...,N be N simultaneously recorded pairs of neural time series. We can
view them as NT recorded pairs of multivariate random vectors {X1

:,t[n], X2
:,t[n]}(n,t)∈[N ]×[T ]. We

obtain β̂1,(0)
1 and β̂2,(0)

1 by CCA as follows:

β̂
1,(0)
1 , β̂

2,(0)
1 = argmax

β1
1∈Rp1 ,β2

1∈Rp2

β1>
1 S12β2

1√
β1>

1 S11β1
1

√
β2>

1 S22β2
1

(D.1)

where

S11 =
1

NT

∑
n,t

(X1
:,t[n]− 1

NT

∑
n,t

X1
:,t[n])(X1

:,t[n]− 1

NT

∑
n,t

X1
:,t[n])>

S22 =
1

NT

∑
n,t

(X2
:,t[n]− 1

NT

∑
n,t

X2
:,t[n])(X2

:,t[n]− 1

NT

∑
n,t

X2
:,t[n])>

S12 =
1

NT

∑
n,t

(X1
:,t[n]− 1

NT

∑
n,t

X1
:,t[n])(X2

:,t[n]− 1

NT

∑
n,t

X2
:,t[n])>.

(D.2)

According to the equivalence between CCA and probablistic CCA shown by A. Anonymous, it
gives an estimate of the first latent factors

Ẑ
k,(0)
1,: [n] = β̂

k,(0)
1 Xk[n] (D.3)

for n = 1, . . . , N and k = 1, 2. The initial second latent factors Ẑk,(0)
2 and the corresponding

factor loading β̂k,(0)
2 is similarly set by the second pair of canonical variables, and so on. Then we
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assign the empirical covariance matrix of {Ẑ1,(0)
f [n], Ẑ

2,(0)
f [n]}n∈[N ] to the initial latent covariance

matrix Σ̂
(0)
f for f = 1, . . . , q and the matrix-variate normal estimate (Zhou, 2014) on {ε̂k,(0)[n] :=

Xk[n] − β̂k,(0)Ẑk,(0)[n]}n∈[N ] to Φ̂
k,(0)
T and Φ̂

k,(0)
S for k = 1, 2. Along µ̂k,(0) := 1

N

∑N
n=1X

k[n],
the above parameters comprises the initial parameter set θ̂(0).

However, we cannot run an E-step on the above parameter set because Φ̂k,(0) is not invertible.
We instead pick one of its unidentifiable parameter sets θ̂(0),{α1,α2}, defined in Eq. (4.8), with all
Φ̂k,(0)’s and Σ̂

(0)
f ’s invertible. Specifically, we take

αkf =
1

2
λmin

(
Σ

1/2
f

[
Φ1
T 0

0 Φ2
T

]−1

Σ
1/2
f

)
(D.4)

for f = 1, . . . , q and k = 1, 2 where λmin(A) is the smallest eigenvalue of symmetric matrix A.
Henceforth, we notate θ̂(0),{α1,α2} by θ̂(0). For t = 1, 2, . . . , we iterate the following E-step and
M-step until convergence.

Another promising initialization is by finding time (t, s) on which the canonical correlation
between X1

:,t and X2
:,s maximizes. i.e., we initialize β̂1,(0)

1 and β̂2,(0)
1 by

β̂
1,(0)
1 , β̂

2,(0)
1 = argmax

β1
1∈Rp1 ,β2

1∈Rp2

β1>
1 S12

(t,s)β
2
1√

β1>
1 S11

(t,t)β
1
1

√
β2>

1 S22
(s,s)β

2
1

such that |t− s| < hcross. (D.5)

where

S11
(t,t) =

1

N

∑
n,t

(X1
:,t[n]− 1

N

∑
n

X1
:,t[n])(X1

:,t[n]− 1

N

∑
n

X1
:,t[n])>

S22
(s,s) =

1

N

∑
n,s

(X2
:,s[n]− 1

N

∑
n

X2
:,t[n])(X2

:,s[n]− 1

N

∑
n

X2
:,s[n])>

S12
(t,s) =

1

N

∑
n,t

(X1
:,t[n]− 1

N

∑
n

X1
:,t[n])(X2

:,s[n]− 1

N

∑
n

X2
:,s[n])>.

(D.6)

for (t, s) ∈ [T ]× [T ]. Then the other parameters are initialized as above. We can even take an
ensemble approach in which we fit LDFA-H on different initialized values and pick the estimate
with the minimum cost function (Eq. (4.9)).

Now, for r = 1, 2, . . . , we alternate an E-step and an M-step until the target parameter Πf

convergences.

E-step Given θ̂ := θ̂(r−1) from the previous iteration, the conditional distribution of latent
factors Z1[n] and Z2[n] with respect to observed data X1[n] and X2[n] on trial n = 1, . . . , N
follows (

Z1
1,:[n];Z2

1,:[n]; . . . ;Z2
q,:[n]

)
| X1[n], X2[n] ∼ MVN

(
m

(r)
~Z|X

[n], V
(r)
~Z|X

)
, (D.7)
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where

V
(r)
~Z|X

=


V

(r)
Z1,Z1|X . . . V

(r)
Z1,Zq |X

... . . . ...
V

(r)
Zq ,Z1|X . . . V

(r)
Zq ,Zq |X

 =


W

(r)
Z1,Z1|X . . . W

(r)
Z1,Zq |X

... . . . ...
W

(r)
Zq ,Z1|X . . . W

(r)
Zq ,Zq |X


−1

(D.8)

and

m
(r)
~Z|X

[n] =
(
m

(r)

Z1
1 |X

;m
(r)

Z1
2 |X

; . . . ;m
(r)

Z2
q |X

)
= V

(r)
~Z|X

(
β̂1>

1 Γ̂1
SX

1[n]Γ̂1
T ; β̂2>

1 Γ̂2
SX

2[n]Γ̂2
T ; . . . ; β̂2>

q Γ̂2
SX

2[n]Γ̂2
T

) (D.9)

given

W
(r)
Zf ,Zg |X =

(
(β̂1>

f Γ̂1
S β̂

1
g) Γ̂1

T 0

0 (β̂2>
f Γ̂2

S β̂
2
g ) Γ̂2

T

)
+ I{f=g} Ω̂f , I{f=g} =

{
1, f = g

0, o.w.
(D.10)

for f, g = 1, . . . , q.

M-step We find θ̂(r) which maximize the conditional expectation of the penalized likelihood
under the same constraints in Eq. (4.9), i.e.

θ̂(r) = argmin
1

N

N∑
n=1

EZ[n]|X[n],θ̂(r−1)

[
log p(X1[n], X2[n], Z1[n], Z2[n]; θ̂(r−1))

]
+

q∑
f=1

2∑
k,l=1

∥∥Λkl
f � Πkl

f

∥∥
1

s.t. Γ̂kT is (2hkε + 1)-diagonal

(D.11)

where p is the probability density function of our model in Eqs. (4.1), (4.4) and (4.5) and the
expectation EZ[n]|X[n],θ̂(r−1) follows the conditional distribution in Eq. (D.7). Taking a block
coordinate descent approach, we solve the optimization problem by alternating M1 - M4.

M1: With respect to latent precision matrices Ωf , Eq. (D.11) reduces to a graphical Lasso
problem,

Ω̂
(r)
f = argmin

Ωf

{
− log det(Ωf ) + tr

(
Ωf

(
V

(r)
Zf |X + Ê[m

(r)
Zf |Xm

(r)>
Zf |X ]

))
+

2∑
k,l=1

∥∥Λkl
f � Πkl

f

∥∥
1

}
(D.12)

for each f = 1, . . . , q where Ê[m
(r)
Zf |Xm

(r)>
Zf |X ] = 1

N

∑N
n=1m

(r)
Zf |X [n] m

(r)>
Zf |X [n]. The graphical

Lasso problem is solved by the P-GLASSO algorithm by Mazumder et al. (2010).
M2: With respect to Γk, Eq. (D.11) reduces to an estimation of matrix-variate normal model

(Zhou, 2014). The estimation problem can be formulated as

Γ̂
k(r)
S =

1

T

(
Ê
[
m

(r)

εk|Xm
(r)>
εk|X

]
+

q∑
f,g=1

tr(V
(r)

Zkf ,Z
k
g |X

)βkfβ
k>
g

)
(D.13)
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and

Γ̂
k(r)
T = argmin

ΓkT


− log det(ΓkT )

+
1

pk
tr
(

ΓkT

( q∑
f,g=1

(βk>f ΓkSβ
k
g ) V

(r)

Zkf ,Z
k
g |X

+ Ê
[
m

(r)>
εk|XΓkSm

(r)

εk|X

]))


s.t. Γ̂kT is (2hkε + 1)-diagonal

(D.14)

for each k = 1, 2 where m(r)

εk|X = Xk − βkm
(r)

Zk|X − µk and Ê[A] is the empirical mean of
a random matrix A. The estimation of ΓkT under the bandedness constraint is tractable with
modified Cholesky factor decomposition approach with bandwidth hkε using the procedure by
Bickel and Levina (2008).

M3: With respect to βk, Eq. (D.11) reduces to a quadratic program

β̂k(r) = arg maxβk


∑
t,s

ΓkT ,(t,s) tr
(
βk>ΓkSβk (V

(r)

Zk:,t,Z
k
:,s|X

+ Ĉov[m
(r)

Zk:,t|X
,m

(r)

Zk:,s|X
])
)

− 2
∑
t,s

ΓkT ,(t,s) tr
(

ΓkSβ
kĈov[Xk

:,t,m
(r)

Zk:,s|X
]
)


(D.15)

where ΓkT,(t,s) is the (t, s) entry in ΓkT and Ĉov(A,B) is the empirical covariance matrix between
random vectors A and B. The analytic form of the solution is given by

βk =

(∑
t,s

ΓkT ,(t,s)(V
(r)

Zk:,t,Z
k
:,s|X

+ Ĉov[m
(r)

Zk:,t|X
,m

(r)

Zk:,s|X
])

)−1(∑
t,s

ΓkT ,(t,s)Ĉov[m
(r)

Zk:,s|X
, Xk

:,t]

)
(D.16)

M4: With resepct to µk, it is straight-forward that Eq. (D.11) yields

µ̂k(r) = Ê

[
Xk −

q∑
f=1

βkfm
(r)>
Zkf |X

]
.

D.2 Simulation details (Section 3)
We simulated realistic data with known cross-region connectivity as follows. Simulating q = 1
pair of latent time-series Zk from Equation (3.8), we introduced an exact ground-truth for the
inverse cross-correlation matrix Π12

1 by setting:

Π1 =

[
(P11

1,0)−1 0
0 (P22

1,0)−1

]
+

[
D1 Π12

1

Π12>
1 D2

]
(D.17)

whereD1 andD2 are diagonal matrices with elementsD1
(t,t) =

∑
s Π12

1,(t,s) andD2
(s,s) =

∑
t Π12

1,(t,s),
which ensures that the matrix on the right hand side is positive definite. The matrix on the left hand
side contains the auto-precision matrices of the two latent time series, with elements simulated
from the squared exponential function:

Pkk
1,0 =

[
exp

(
−ck(t− s)2

)]
t,s

+ λIT , (D.18)
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with c1 = 0.105 and c2 = 0.142, chosen to match the observed LFPs auto-correlations in the
experimental dataset (Section 4.3.2). We added the regularizer λIT , λ = 1, to render Pkk invertible.
We designed the true inverse cross-correlation matrix Π12 to induce lead-lag relationship between
Z1 and Z2 in two epochs as depicted in the right-most panel of Fig. 4.2a. Specifically, the elements
of Π12 were set:

Π12
(t,s) =

{
−r, where Z1

1,t and Z2
1,s partially correlate,

0, elsewhere,
(D.19)

where the association intensity r = 0.6 was chosen to match our cross-correlation estimate in
the experimental data (Section 4.3.2). Finally, we rescaled P1 = Π−1

1 to have diagonal elements
equal to one. The corresponding factor loading vector βk1 was randomly generated from standard
multivariate normal distribution and then scaled to have ‖βk1‖2 = 1.

We generated the noise εk from the N = 1000 trials of the experimental data analyzed in
Section 4.3.2. First, we permuted the trials in one region to remove cross-region correlations. Let
{Y 1[n], Y 2[n]}n=1,...,N be the permuted dataset. Then we contaminated the dataset with white
noise to modulate the strength of noise correlation relative to cross-region correlations. i.e.

εk:,t = Y k
:,t − µk:,t + ηk:,t, η

k
:,t

indep∼ MVN
(

0, λεĈov[Y k
:,t]
)
, and µk:,t = Ê[Y k

:,t] (D.20)

where Ê[Y k
:,t] and Ĉov[Y k

:,t] wer the empirical mean and covariance matrix of Y k
:,t, respectively, for

k = 1, 2, t = 1, . . . , T . The noise auto-correlation level was modulated by λε ∈ {2.78, 1.78, 0.44, 0.11}.
We also obtained Σ1 by scaling P1 so that Σkk

1,(t,s) = βk>1 Skt β
k
1 . Putting all the pieces together, we

generated observed time series by Eq. (4.1).

D.3 Experimental data analysis details (Section 3.2)
The strength of each factor, which is characterized by Σf , is shown in Fig. D.1.

We also examined an alternative definition of information flow, using non-stationary regress-
sion in the spirit of Granger causality. For the latent factor f in V4 at time t, we use partial R2,
effectively comparing the full regression model using the full history of latent variables in both
area,

Z1
f,t ∼ Z1

f,1:t−1 + Z2
f,1:t−1

with the reduced model using history of latent variables in V4 only,

Z1
f,t ∼ Z1

f,1:t−1.

The partial R2 for Z1
f,t on Z2

f,1:t−1 given Z1
f,1:t−1 summarizes the contribution of PFC history to

V4, after taking account of the autocorrelation in V4, and thus can be viewed as information flow
from V4 to PFC at time t. Dynamic information flow from V4 to PFC is defined similarly. The
results shown in Fig. D.2 are consistent with those in Fig. 4.5d.
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Figure D.1: Squared Frobenius norms of covariance matrix estimates, Σ̂f , for all factors f =
1, . . . , 10. Notice that the amplitudes of the top four factors dominate the others.

Figure D.2: Information flow by partial R2 for the top three factors. In this figure, we
characterize dynamic information flow in terms of partial R2. We show dynamic information flow
from V 4→ PFC (blue) and PFC → V 4 (orange). The results in the first panel are consistent
with those in the first panel of Fig. 4.5d.
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Appendix E

Appendix for Chapter 5

E.1 A Note on the Hilbert Transform
Let Zt = Xt+iYt be the output of a complex signal that has been filtered in a band (ω0−δ, ω0 +δ).
Here Xt and Yt are real. Suppose we observe Xt. The problem is to recover Zt, which is possible
when δ is sufficiently small. The Hilbert transform operates on Xt to produce Yt according to the
following:

Yt =

∫ 1

0

Xu

π(t− u)
du.

This formula is given in numerous available sources. Its derivation can be made concise, as
follows.

Note first that the Fourier transform of Zt, which we write as F(Zt), is concentrated around ω0

and the transform of its complex conjugate F(Zt) is concentrated around −ω0. From the general
relations

Xt =
1

2
(Zt + Zt)

Yt =
−i
2

(Zt − Zt)

we have the Fourier transforms

F(Xt) =
1

2
(F(Z) + F(Z))

F(Yt) =
−i
2

(F(Z)−F(Z)).

We write F(Xt) and F(Yt) as functions of a real frequency ω in the form F(Xt)[ω] and F(Yt)[ω].
Because F(Xt) and F(Yt) are concentrated around ω0 and −ω0, when we multiply F(Xt)[ω] by
(−i sgn(ω)) we get

(−i sgn(ω))F(Xt)[ω] = F(Yt)[ω]

where sgn(ω) is the sign of ω. As a result, the convolution Xt ∗ F−1(−isgn(ω0)) satisfies

Xt ∗ F−1(−i sgn(ω)) = Yt.
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Plugging the formula for F−1(−i sgn(ω0)) (a standard example in texts on Fourier transforms)
into the definition of convolution produces the integral appearing above, giving the Hilbert
transform of Xt. The resulting Zt is called the analytic signal.

E.2 Theorems and Proofs

E.2.1 Proof of Theorem 5.4.1
We first provide a fuller statement of the theorem we are trying to prove. To start, we recall some
preliminaries - see (Barndorff-Nielsen, 2014) for additional details. An exponential family is a
family of distributions D such that, for every distribution P ∈ D, we can represent the density of
P in the following form:

pθ(x) = a(θ)b(x) exp

(
k∑
i=1

θiti(x)

)
For some θ ∈ Rk and sufficient statistics {ti(x)}. For any exponential family D and choice

of sufficient statistics {ti(x)} (collectively t(x)) let ΘD,t = {θ ∈ Rd|
∫
x
pθ(x)dx <∞}. Let P θ

denote the distribution corresponding to the density pθ. If D is an exponential family and there
exists some choice of statistics {ti(x)} inducing densities pθ(x) for which D = {P θ|θ ∈ ΘD,t}
then we say that D is full. ΘD,t is called a parameter space of D. We say that ΘD,t is linearly
dependent if we can express some entry θi as a linear combination of other entries in θ for all
θ ∈ ΘD,t. If ΘD,t is linearly independent, then the statistics ti(x) are minimal sufficient statistics
(see Barndorff-Nielsen (2014)). Finally, if there exist statistics {ti(x)} for which ΘD,t is an open
set of Rd, then we say that the family D is regular.

Now, we define the following families. Denote by D1 the full family of distributions given
by densities {pµ,Σ|(µ,Σ) ∈ N1} where pµ,Σ is the 2d-dimensional normal density and N1 =
{(µ,Σ)|

∫
x
pµ,Σ(x)dx <∞,Σ symmetric} and by (µ,Σ) ∈ R4d2+2d we mean a vector containing

all of the entries in µ,Σ. D1 consists of all distributions which can be written as CN(m,Γ, C) by
the definition of the complex normal distribution.

Further, byD2 denote the full family of distributions given by the densities {pµ,Σ|(µ,Σ) ∈ N2}
where pµ,Σ is once again the 2d-dimensional normal distribution but this time:

N2 = {(µ,Σ)|
∫
x

pµ,Σ(x)dx <∞,Σ ∈ S}

Where S is the set of 2d× 2d matrices Σ ∈ S which can be written as:

Σ =

[
A −B
B A

]
Where A ∈ Rd×d is a symmetric matrix and B ∈ Rd×d is an anti-symmetric matrix (i.e.

B = −BT ). From Picinbono (1996), we have that for a random variable X ∼ CN(m,Γ, 0),
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we can say that Σ11 = 1
2
ReΓ,Σ12 = −1

2
ImΓ,Σ21 = 1

2
ImΓ,Σ22 = 1

2
ReΓ. Therefore, for

X ∼ CN(m,Γ, 0) it follows that Σ must have the form of the matrices in S. Hence, D2 is
equivalent to the set of distributions expressible as CN(m,Γ, 0) - the proper case.

Finally, denote by D3 the full family of distributions D3 = {p0,Σ|(0,Σ) ∈ N2}. This is the
circularly symmetric case.

Before stating the theorem, we first define some statistics which will be necessary in the
statement of the theorem. Let Si(x) = (Rex, Imx)i for 1 ≤ i ≤ 2d. Let let Tij(x) =
(Rex, Imx)i(Rex, Imx)j . Let S(x) = [Si(x)|1 ≤ i ≤ 2d] denote a vector concatenating
all of the statistics Si(x), and likewise define T (x) = [Tij(x)|1 ≤ i ≤ j ≤ 2d]. Let φ(x) =
Concat[T (x), S(x)] denote the statistic created by concatenating T and S. Further, let T 1(x)ij =
RexiRexj + ImxiImxj (1 ≤ i ≤ j ≤ d) and T 2(x)ij = RexiImxj − ImxiRexj (1 ≤ i ≤
j ≤ d). Define T 1(x) and T 2(x) analogously to above. Let φ′(x) = Concat[T1, T2, S] and
φ′′(x) = Concat[T1, T2] We can now state the theorem:

Theorem E.2.1. D1,D2,D3 are all full, regular exponential exponential families. Then, φ(x) is
a minimal sufficient statistic for D1, φ′(x) is a minimal sufficient statistic for D2 and φ′′(x) is a
minimal sufficient statistic for D3.

Proof. D1 is known to be full and regular (Barndorff-Nielsen, 2014). All that remains for D1 is to
show that φ(x) is a minimal sufficient statistic.

Letting z = (Rex, Imx) for X = x can write the normal PDF:

pµ,Σ(x) =
1√

(2π)2d|Σ|
exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
∝ exp

(
−1

2
zTΣ−1z + µTΣ−1z − 1

2
µTµ

)
∝ exp

(
−1

2
Tr
(
Σ−1zzT

)
+ µTΣ−1z − 1

2
µTµ

)
∝ exp

(
−1

2

∑
i<j

2
(
Σ−1 � zzT

)
ij
− 1

2

∑
i

(
Σ−1 � zzT

)
i
+ µTΣ−1z − 1

2
µTµ

)

It is therefore clear that without any constraints on µ,Σ, the statistics S(X)i = zi (for 1 ≤ i ≤ 2d)
and T (X)ij = (zzT )ij (for 1 ≤ i ≤ j ≤ 2d) which together form φ are minimal sufficient.

Now, consider the case that C = 0, corresponding to the family D2. From Picinbono (1996),
we have that Σ11 = 1

2
ReΓ,Σ12 = −1

2
ImΓ,Σ21 = 1

2
ImΓ,Σ22 = 1

2
ReΓ. Therefore, Σ is of the the

form specified in lemma E.2.5, and so Σ−1 is as well. In particular, we can write Σ−1 as:

Σ−1 =

[
A B
−B A

]
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Let z1 = ReX and z2 = ImX . We can then rewrite the density above as follows:

pµ,Σ(x) ∝ exp

(
−1

2

∑
i<j

2

([
A B
−B A

]
� zzT

)
ij

− 1

2

∑
i

([
A B
−B A

]
� zzT

)
i

+ µTΣ−1z

)

= exp

(
−1

2

(∑
i<j

2(A� z1z
T
1 )ij +

∑
i<j

2(A� z2z
T
2 )ij + 2

∑
ij

(B � z1z
T
2 )ij

)

−1

2

∑
i

Aii(z
2
i + z2

i+d) + µTΣ−1z

)

= exp

(
−1

2

(∑
i<j

2(A� z1z
T
1 )ij +

∑
i<j

2(A� z2z
T
2 )ij +

∑
i

Aii(z
2
i + z2

i+d)

)

−
∑
ij

(B � z1z
T
2 )ij + µTΣ−1z

)

= exp

(
−1

2

(∑
i<j

2(A� (z1z
T
1 + z2z

T
2 ))ij +

∑
i

Aii(z
2
i + z2

i+d)

)

−
∑
i<j

(B � (z1z
T
2 − z2z

T
1 ))ij + µTΣ−1z

)

The fourth line follows from observing that B = −BT (one consequence of which is that
Bii = 0). We can now see that the statistics S(X) as defined above along with T 1

ij(X) =
ReXiReXj + ImXiImXj (for i ≤ j) and T 2

ij(X) = ReXiImXj − ImXiReXj (for i < j)
which together form φ′ are minimal sufficient statistics.

Now, we must show that D2 is full and regular. Let pθ′(x) ∝ exp(φ′(x)T θ′) where θ′ ∈
Rd2+2d. To show that D2 is full, we need to show that there doesn’t exist any θ′ such that∫
x

exp(φ′(x)T θ′)dx < ∞ but pθ′(x) does not correspond to any distribution in D2. Assume
towards a contradiction that such a θ′ existed. Then, using the derivation above, it is easy to see that
we could construct a symmetric A, an antisymmetric B, and vector µ such that pµ,Σ(x) = pθ

′
(x).

The fact that
∫
pθ
′
(x)dx < ∞ implies that

∫
pµ,Σ(x)dx < ∞, so by construction of D2, we

know that pµ,Σ(x) corresponds to a distribution in D2 and so therefore pθ′(x) corresponds to a
distribution inD1 which is a contradiction. Hence, all integrable pθ′(x) correspond to a distribution
in D2 and so D2 is full.

Now we want to show that D2 is regular. In particular, we need to show that the set Θ′ =
{θ′|

∫
pθ
′
(x)dx <∞} is open in Rd2+2d. Recall that D1 is regular. We can see that D1 is the set

of distributions with integrable densities pθ(x) ∝ exp(φ(x)T θ) where θ ∈ R2d(2d+1)/2+2d. Let
Θ = {θ|

∫
pθ(x)dx <∞}. Because D1 is regular, Θ is an open subset ofR2d(2d+1)/2+2d.

Since D2 ⊂ D1, for every θ′ ∈ Θ′, there exists a θ ∈ Θ such that pθ′(x) = pθ(x). In
particular, there exists a map from θ′ to θ for which pθ

′
(x) = pθ(x). I claim that this map

is a linear map; in other words, there exists some matrix M ∈ R(d2+2d)×(2d(2d+1)/2+2d) such
that if θ = MT θ′ then pθ(x) = pθ

′
(x). To see that this claim holds true, just note that the

sufficient statistics for D2 are linear combinations of the sufficient statistics in D1. For instance,
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T 1
ij(x) = RexiRexj + ImxiImxj = Tij(x) + Ti+d,j+d(x); other equalities can be shown for

the remaining statistics. In particular, this means that there exists some matrix M such that
φ′(x) = Mφ(x). Then, simply note that pθ′(x) ∝ exp(φ′(x)T θ′) = exp((Mφ(x))T θ′) =
exp((φ(x))TMθ′) ∝ pMθ′(x). Hence M is a linear map as described.

Assume towards a contradiction that Θ′ is not an open set in Rd2+2d. Then, there exists
some point θ′ ∈ Θ′ such that for every ε there exists another point w ∈ Rd2+2d such that
w 6∈ Θ′ but ||w − θ′||2 < ε. Because w 6∈ Θ′, this implies that Mw 6∈ Θ. However, note that
||MTw −MT θ′||2 = ||MT (w − θ′)||2 ≤ ||M ||2||w − θ′||2 ≤ ||M ||2ε. Since ε is arbitrary, our
statement would seem to imply that we can find an Mw arbitrarily close to θ ∈ Θ such Mw 6∈ Θ.
However, this is a contradiction of our assumption that Θ is an open set. Therefore, Θ′ must be an
open set and so D2 is regular.

Finally, we want to show the same properties about D3. In this scenario,µ = 0 so we have

pX(x) ∝ exp

(
−1

2

(∑
i<j

2(A� (z1z
T
1 + z2z

T
2 ))ij +

∑
i

Aii(z
2
i + z2

i+d)

)

−
∑
i<j

(B � (z1z
T
2 − z2z

T
1 ))ij + µTΣ−1z

)

= exp

(
−1

2

(∑
i<j

2(A� (z1z
T
1 + z2z

T
2 ))ij +

∑
i

Aii(z
2
i + z2

i+d)

)

−
∑
i<j

(B � (z1z
T
2 − z2z

T
1 ))ij

)
And so the statistics T 1(X) and T 2(X), which together form φ′′(x) are minimal sufficient.

The same strategy as applied above can be used to show that D3 is full and regular.

E.2.2 The Multivariate Generalized Von Mises Distribution
The multivariate Generalized von Mises (mGvM) distribution generalizes the Torus Graphs
distribution by containing second moment terms such as (cos Θi)

2, (sin Θi)
2 and (cos Θi)(sin Θi)

(Navarro et al., 2017). The definition of the distribution is given below:
Definition E.2.2 (Multivariate Generalized Von-Mises (mGvM) Distribution). We say that a
random vector Θd : Ω → [0, 2π)d is distributed multivariate generalized von-Mises Θd ∼
mGvM(ν, ψ) for a 2d-dimensional vector ν and 2d × 2d symmetric matrix ψ if the following
holds:

pΘ(θ) ∝ exp

(
νT
[
cos θ
sin θ

]
+

[
cos θ
sin θ

]T
ψ

[
cos θ
sin θ

])
By constraining the parameters on the mGvM distribution, we can achieve a TG distribution:

Lemma E.2.3 (Relation between mGvM and TG distributions). If Θ ∼ mGvM(ν, ψ) and
ψii = ψi+d,i+d for 1 ≤ i ≤ d, and further ψi,i+d = 0 for 1 ≤ i ≤ d, then Θ ∼ TG(η) for
ηij = 2[ψij, ψi,j+d, ψi+d,j, ψi+d,j+d]

T and ηii = [νi, νi+d].
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Proof. Assume that Θ ∼ mGvM(ν, ψ) for the conditions stated in the lemma. Then:

pΘ(θ) ∝ exp

(
νT
[
cos θ
sin θ

]
+

[
cos θ
sin θ

]T
ψ

[
cos θ
sin θ

])

= exp

(∑
i

[
νi νi+d

] [cos θi
sin θi

]
+
∑
i

((cos θi)
2ψii + (sin θi)

2ψi+d,i+d)+∑
i 6=j

(
ψi,j cos θi cos θj + ψi,j+d cos θi sin θj+

ψi+d,j sin θi cos θj + ψi+d,j+d sin θi sin θj
))

= exp

(∑
i

[
νi νi+d

] [cos θi
sin θi

]
+
∑
i

ψii

+
∑
i<j

2
[
ψij ψi,j+d ψi+d,j ψi+d,j+d

] 
cos θi cos θj
cos θi sin θj
sin θi cos θj
sin θi sin θj

)

∝ exp

(∑
i

[
νi νi+d

] [cos θi
sin θi

]
+
∑
i<j

2
[
ψij ψi,j+d ψi+d,j ψi+d,j+d

] 
cos θi cos θj
cos θi sin θj
sin θi cos θj
sin θi sin θj

)

= exp

∑
i

ηTi

[
cos θi
sin θi

]
+
∑
i<j

ηTij


cos θi cos θj
cos θi sin θj
sin θi cos θj
sin θi sin θj




Where the final line has the form of the TG distribution, with the values of η given in the
lemma.

Further, by conditioning the angles of the CN distribution on the amplitudes, we achieve an
mGvM distribution for any parameterization of the normal distribution:
Lemma E.2.4 (Complex Normal and mGvM). Assume X ∼ CN(m,Γ, C). By definition, there
exists µ,Σ such that (ReX, ImX) ∼ N(µ,Σ). Let Θi = argXi denote the angle of Xi, and let

Ri = |Xi| denote the magnitude ofXi. Then: Θ|R = r ∼ mGvM(ν, ψ) where ν =

[
r
r

]
�(Σ−1µ)

and ψ = −1
2

Σ−1 �
[
r
r

] [
r
r

]T
.

Proof. Let Z = (ReX, ImX). By change of variables, note that

pZ(r1 cos θ1, . . . , rd cos θd, r1 sin θ1, . . . , rd sin θd)
∏
i

ri = pΘ,R(θ, r)

Then:
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pΘ|R(θ|r) =
pΘ,R(θ, r)

pR(r)
∝ pΘ,R(θ, r) ∝ pZ(r1 cos θ1, . . . , rd cos θd, r1 sin θ1, . . . , rd sin θd)

∝ exp

(
−1

2

([
r � cos θ
r � sin θ

]
− µ

)T
Σ−1

([
r � cos θ
r � sin θ

]
− µ

)T)

∝ exp

([
r � cos θ
r � sin θ

]T
Σ−1µ− 1

2

[
r � cos θ
r � sin θ

]
Σ−1

[
r � cos θ
r � sin θ

])

= exp

([
cos θ
sin θ

]T (
(Σ−1µ)�

[
r
r

])
− 1

2

[
cos θ
sin θ

](
Σ−1 �

[
r
r

] [
r
r

]T)[
cos θ
sin θ

])

= exp

(
νT
[
cos θ
sin θ

]
+

[
cos θ
sin θ

]T
ψ

[
cos θ
sin θ

])

For the values of ν, ψ given in the lemma.

E.2.3 Proof of Theorem 5.4.2

Proof. Note that (ReX, ImX) ∼ N(µ,Σ). By theorem E.2.4,

Θ|R = r ∼ mGvM(ν, ψ) = mGvM

([
r
r

]
� (Σ−1µ),

−1

2
Σ−1

[
r
r

] [
r
r

]T)
If ψii = ψi+d,i+d and ψi,i+d = 0, then lemma E.2.3 applies and the corollary follows. By

construction, Σ−1
ii = Σ−1

i+d,i+d and Σ−1
i,i+d = 0, and hence

ψii =

(
−1

2
Σ−1

[
r
r

] [
r
r

]T)
ii

=
−1

2
ririΣ

−1
ii

=
−1

2
ririΣ

−1
i+d,i+d =

(
−1

2
Σ−1

[
r
r

] [
r
r

]T)
i+d,i+d

= ψi+d,i+d

ψi,i+d =

(
−1

2
Σ−1

[
r
r

] [
r
r

]T)
i,i+d

=
−1

2
ri,i+dΣ

−1
i,i+d = 0

which meets the requirement.

E.2.4 Structure of Proper Matrices

We need the following auxiliary result for the proof of theorem 5.4.3 that propriety of the CN
distribution induces constraints on the conditional TG distribution.
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Lemma E.2.5. Assume W is a 2d × 2d symmetric matrix such that, for a partition W =[
W11 W12

W T
12 W22

]
, we have that W12 is antisymmetric (i.e. W12 = −W T

12) and that W11 = W22.

Assume that inverses of each block of W (that is, W−1
11 and W−1

12 ) exist. Then, W−1 has the same
form; that is, it is a symmetric matrix for which (W−1)12 = −(W−1)T12 and (W−1)11 = (W−1)22

Proof. Let W be a symmetric matrix that can be written as W =

[
A B
−B A

]
. Using the block-

matrix inversion formula which leverages the Schur complement of a matrix (see Zhang (2006)),
I can write:

W−1 =

[
(A−BA−1(−B))−1 −(A−BA−1(−B))−1BA−1

−A−1(−B)(A−BA−1(−B))−1 A−1 + A−1(−B)(A−BA−1(−B))−1BA−1

]
=

[
(A+BA−1B)−1 −(A+BA−1B)−1BA−1

A−1B(A+BA−1B)−1 A−1 − A−1B(A+BA−1B)−1BA−1

]
There are two important aspects of this expression to note. First, the upper right and lower left

blocks are antisymmetric (in other words, that W−1
i,j+d = −W−1

j,i+d, for 1 ≤ i ≤ d, 1 ≤ j ≤ d):

−(A+BA−1B)−1BA−1 = −(A+BA−1B)−1(AB−1)−1

= −((AB−1)(A+BA−1B))−1 = −(AB−1A+B)−1

=⇒ [−(A+BA−1B)−1BA−1]T = [−(AB−1A+B)−1]T

= [−(AB−1A+B)T ]−1 = [−(A(BT )−1A+BT )]−1

= (AB−1A+B)−1 = (A+BA−1B)−1BA−1

Further, I claim that the top left and bottom right blocks ofA−1 are equal (thatA−1
ij = A−1

i+d,j+d

for 1 ≤ i ≤ d, 1 ≤ j ≤ d). To see this, note that:

A−1 − A−1B(A+BA−1B)−1BA−1

= A−1(A+BA−1B)(A+BA−1B)−1 − A−1B(A+BA−1B)−1BA−1

= (I + A−1BA−1B)(A+BA−1B)−1 − A−1B(A+BA−1B)−1BA−1

= (A+BA−1B)−1 + A−1BA−1B(A+BA−1B)−1 − A−1B(A+BA−1B)−1BA−1

Therefore, the desired condition is met if A−1BA−1B(A + BA−1B)−1 = A−1B(A +
BA−1B)−1BA−1. To show that this is the case, note that:

A−1BA−1B(A+BA−1B)−1 = (B−1AB−1A)−1(A+BA−1B)−1

= ((A+BA−1B)B−1AB−1A)−1

= (AB−1AB−1A+ A)−1

A−1B(A+BA−1B)−1BA−1 = (B−1A)−1(A+BA−1B)−1(AB−1)−1

= (AB−1(A+BA−1B)(B−1A))−1

= (AB−1AB−1A+ A)−1
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Therefore, W−1 has the desired form.

We also need this auxiliary result relating the parametrization of the TG distribution TG(η) to
the parametrization TG(η(φ)) as specified in equations 5.2 and 5.3.
Lemma E.2.6. Assume Θ ∼ TG(η). Then, Θ ∼ TG2(φ) for φi = ηi, φij = 1

2
[(ηij)

1 +
(ηij)

4,−(ηij)
2 + (ηij)

3, (ηij)
1 − (ηij)

4, (ηij)
2 + (ηij)

3], where (ηij)
k denotes the kth component

of ηij .

Proof. From basic properties of trig functions:

φTij


cos(θi − θj)
sin(θi − θj)
cos(θi + θj)
sin(θi + θj)

 = ηTij


cos θi cos θj
cos θi sin θj
sin θi cos θj
sin θi sin θj

 =
1

2
ηTij


cos(θi + θj) + cos(θi − θj)
sin(θi + θj)− sin(θi − θj)
sin(θi + θj) + sin(θi − θj)
cos(θi − θj)− cos(θi + θj)


=⇒ φij =

1

2
[(ηij)

1 + (ηij)
4,−(ηij)

2 + (ηij)
3, (ηij)

1 − (ηij)
4, (ηij)

2 + (ηij)
3]

The proof then follows by comparing the PDFs.

E.2.5 Proof of Theorem 5.4.3

Proof. Let Σ = Cov((ReX, ImX), (ReX, ImX)). From (Picinbono, 1996), we have that
Σ11 = 1

2
ReΓ,Σ12 = −1

2
ImΓ,Σ21 = 1

2
ImΓ,Σ22 = 1

2
ReΓ. Therefore, Σ is of the the form

specified in lemma E.2.5, and so Σ−1 is as well. Note that Σ−1 meets the conditions of theorem
5.4.2, since (Σ−1)ii = (Σ−1)i+d,i+d and (Σ−1)i,i+d = (Σ−1)i+d,i = 0 (the second fact follows
from the observation that the diagonal of any antisymmetric matrix must be zero to achieve
antisymmetry). Therefore, Θ|R = r ∼ TG(η) where ηij = −1

2
rirj[Σ

−1
i,j ,Σ

−1
i,j+d,Σ

−1
i+d,j,Σ

−1
i+d,j+d].

Therefore:

φij =
1

2
[(ηij)

1 + (ηij)
4,−(ηij)

2 + (ηij)
3, (ηij)

1 − (ηij)
4, (ηij)

2 + (ηij)
3]

=
1

2

(
−1

2
rirj

)
[2(Σ−1)ij,−2(Σ−1)i,j+d, 0, 0]

Which is exactly the form desired (i.e. (φij)
3 = (φij)

4 = 0). Note then that all parameters are
zero except for those on terms of the form cos(θi − θj) and sin(θi − θj). Clearly, these terms are
invariant to a circular shift since (θi + ε)− (θj + ε) = θi − θj for all ε. Therefore, Θ is circularly
symmetric.

E.2.6 Proof of Corollary 5.4.4

Proof. We have the same setup as in theorem 5.4.3, so φij has the same form. In addition, from
theorem 5.4.2 we have ηi = ri[(Σ

−1µ)i, (Σ
−1µ)i+d] and from lemma E.2.6 ηi = φi so therefore

since µ = E[(ReX, ImX)] = 0 we have φi = 0 in addition.

127



E.3 Fitting Procedure for Latent Variable Model
As discussed in the text, the model we aim to fit is the following:

Z(n) ∼ CN(0,Γ)

X(n),r = βrZ(n)
r + ε(n),r

ε(n),r ∼ CN(0, ηr)

To alleviate identifiability issues in the estimation of Γ, we constrain (βr)Hβr = 1 and further
that Im(βr1) = 0 where βr1 denotes the first element of βr. The likelihood function for this model
is the following:

L(θ; {x(n)}, {z(n)}) =
N∏
n=1

[
1

πR det(Γ)
exp(−(zn)HΓ−1z(n))

R∏
r=1

[
1

πR(r) det(ηr)
exp(−(x(n),r − βrz(n)

r )H(ηr)−1(x(n),r − βrz(n)
r ))

] ]
We use expectation-maximization to fit the model. First, we define auxiliary variables L(t) ∈

CR×R,W (t) ∈ CR×R, V (n)(t) ∈ CR×1

[L(t)]ij =

{
(βi)H(ηi)−1βr i = j

0 i 6= j

W (t) = (Γ−1(t) + L(t))−1

[V (n)(t)]r = (βr)H(ηr)−1x(n),r

µ(n)(t) = W (t)V (n)(t)

We note that Z(n)|X(n) ∼ CN(W (t)V (n)(t),W (t)). We then compute the following “Q”
function:

Q(θ(t+ 1)) = EZ|X,θ(t) logL(θ;X,Z)

∝
∑
n

[
− ln det Γ +

∑
r

(− ln det ηr)− Tr(Γ−1(W (t) + µ(n)(µ(n))H))

+
∑
r

[
− (x(n),r)H(ηr)−1x(n),r + µ

(n)
r (βr)H(ηr)−1x(n),r

+ (x(n),r)H(ηr)−1βrµ(n)
r − (βr)H(ηr)−1βr(Wrr(t) + µ(n)

r µ
(n)
r )

]
Note that since the model’s parameters are complex-valued, we must use Wirtinger calculus

to take derivatives (see Adali et al. (2011) for an introduction to Wirtinger calculus). By taking
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derivatives according to the Wirtinger calculus and setting them equal to zero, we achieve the
following update steps:

Γ(t+ 1) = W (t) +
1

N

N∑
n=1

µ(n)(t)(µ(n)(t))H

βr(t+ 1) =

∑
n x

(n),r(µ
(n)
r (t))∑

n(Wrr(t) + µ
(n)
r (t)(µ

(n)
r (t)))

ηr(t+ 1) =
1

N

∑
n

[
x(n),r(x(n),r)H − (x(n),r)(βr(t+ 1))H(µ

(n)
r (t)))

− µ(n)
r βr(t+ 1)(x(n),r)H + βr(t+ 1)(βr(t+ 1))H(Wrr(t) + µ(n)

r (µ
(n)
r (t))µr(t)

]
To satisfy the constraints (βr)H(βr) = 1 and Imβr1 = 0, we renormalize βr at the end of each

iteration and multiply it by a complex scalar of norm one such that Imβr = 0. We then apply the
opposite transformation to the appropriate column/row of Γ. This transformation will not change
the marginal likelihood L(θ;X), which is the objective for EM.

E.4 Table of Examples Comparing PLV, Amplitude Correla-
tion, and Complex Correlation
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Explanation Setting Result

PLV, amplitude covariance
and complex means are zero,

but complex covariance is nonzero

Θ1,Θ2 ∼ Unif(0, 2π)
R1 = Θ2

R2 = Θ1

PLV (Θ1,Θ2) = 0

Cov(R1, R2) = 0
EX1 = EX2 = 0
|Cov(X1, X2)| > 0
|PCov(X1, X2)| > 0

Another example in which
PLV, amplitude covariance

and complex means are zero,
but complex covariance is nonzero

Θ1,Θ2 ∼ Unif(0, 2π)
R1 = Θ1 + Θ2 mod 2π
R2 = Θ1 −Θ2 mod 2π

PLV (Θ1,Θ2) = 0

Cov(R1, R2) = 0
EX1 = EX2 = 0
|Cov(X1, X2)| > 0

PLV, and amplitude covariance
are zero, but complex means

and complex covariance are nonzero

Θ1,Θ2 ∼ Unif(0, 2π)
R1 = Θ1 + Θ2

R2 = Θ1 −Θ2 + 2π

PLV (Θ1,Θ2) = 0

Cov(R1, R2) = 0
EX1 6= 0, EX2 6= 0
|Cov(X1, X2)| > 0

PLV, amplitude covariance
are complex covariance are zero
but complex means are nonzero

Θ1,Θ2 ∼ Unif(0, 2π)
R1 = Θ1

R2 = Θ2

PLV (Θ1,Θ2) = 0

Cov(R1, R2) = 0
EX1 6= 0, EX2 6= 0
|Cov(X1, X2)| = 0
|PCov(X1, X2)| = 0

Table E.1: Examples of various ways in which complex covariance and means can capture
associations not captured by PLV or amplitude correlation. In all cases, assume that variables are
independent unless otherwise stated. We define X1 = R1 exp(iΘ1) and X2 = R2 exp(iΘ2).
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Brémaud, P. (2014). Fourier analysis of stochastic processes. In Fourier Analysis and Stochastic
Processes, pages 119–179. Springer.

Brillinger, D. R. (2001). Time series: data analysis and theory. SIAM.

Brincat, S. L. and Miller, E. K. (2015). Frequency-specific hippocampal-prefrontal interactions
during associative learning. Nature Neuroscience, 18:576–581.

Brincat, S. L. and Miller, E. K. (2016). Prefrontal cortex networks shift from external to internal
modes during learning. Journal of Neuroscience, 36(37):9739–9754.

Buesing, L., Machado, T. A., Cunningham, J. P., and Paninski, L. (2014). Clustered factor analysis
of multineuronal spike data. In Advances in Neural Information Processing Systems, pages
3500–3508.
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